Skip to main content

linefit ground segmentation algorithm Python bindings

Project description

linefit

linefit is a ground segmentation algorithm for 3D point clouds. This repo we setup a python binding for the original C++ code and push to pypi for easy installation through pip install linefit.

Author: C++ code from Lorenz Wellhausen, nanobind by Qingwen Zhang.

Running on macOS, Windows and Linux, with Python Version >= 3.8.

Available in:

📜 Change Log:

  • 2024-07-03: Speed up nanobind np.array <-> std::vector<Eigen:: Vector3d> conversion and also NOMINSIZE in make. Speed difference: 0.1s -> 0.01s. Based on discussion here.
  • 2024-02-15: Initial version.

0. Setup

Choose one of the following options to install the package (recommended to use Option A pip install linefit):

Option A: Install from pypi pip install linefit

Option B: Clone this repo and run following to build:

cmake -B build && cmake --build build
pip install .
python3 -c 'import linefit; print("success")'

1. Run the example

After installation, you can run the example by, it will directly show a default effect of demo data.

python example.py

A window will pop up and show the ground segmentation result.

Parameter description

TL;DR: tune the sensor_height to offset the ground point z to 0. Others are optional for better performance. If you are interested in the details, please read the following.

Parameters are set in assets/config.toml

This algorithm works on the assumption that you known the height of the sensor above ground. Therefore, you have to adjust the sensor_height to your robot specifications, otherwise, it will not work.

The default parameters should work on the KITTI dataset.

Ground Condition

  • sensor_height Sensor height above ground.
  • max_dist_to_line maximum vertical distance of point to line to be considered ground.
  • max_slope Maximum slope of a line.
  • min_slope Minimum slope of a line.
  • max_fit_error Maximum error a point is allowed to have in a line fit.
  • max_start_height Maximum height difference between new point and estimated ground height to start a new line.
  • long_threshold Distance after which the max_height condition is applied.
  • max_height Maximum height difference between line points when they are farther apart than long_threshold.
  • line_search_angle How far to search in angular direction to find a line. A higher angle helps fill "holes" in the ground segmentation.

Segmentation

  • r_min Distance at which segmentation starts.
  • r_max Distance at which segmentation ends.
  • n_bins Number of radial bins.
  • n_segments Number of angular segments.

Other

  • n_threads Number of threads to use.

Acknowledgement & Citation

The original C++ code is from the repo we forked: lorenwel/linefit_ground_segmentation.

The original methods are described in the following paper:

@inproceedings{himmelsbach2010fast,
  title={Fast segmentation of 3d point clouds for ground vehicles},
  author={Himmelsbach, Michael and Hundelshausen, Felix V and Wuensche, H-J},
  booktitle={Intelligent Vehicles Symposium (IV), 2010 IEEE},
  pages={560--565},
  year={2010},
  organization={IEEE}
}

More python binding examples can be found in our other project:

  • dufomap: a dynamic awareness mapping framework. Remove dynamic points in a raw map.
  • dztimer: a breakout timer for python code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

linefit-1.0.0-pp310-pypy310_pp73-win_amd64.whl (127.7 kB view details)

Uploaded PyPy Windows x86-64

linefit-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (159.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

linefit-1.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (107.3 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

linefit-1.0.0-pp310-pypy310_pp73-macosx_10_14_x86_64.whl (117.5 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

linefit-1.0.0-pp39-pypy39_pp73-win_amd64.whl (127.7 kB view details)

Uploaded PyPy Windows x86-64

linefit-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (159.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

linefit-1.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (107.3 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

linefit-1.0.0-pp39-pypy39_pp73-macosx_10_14_x86_64.whl (117.6 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

linefit-1.0.0-pp38-pypy38_pp73-win_amd64.whl (127.7 kB view details)

Uploaded PyPy Windows x86-64

linefit-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (159.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

linefit-1.0.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (107.3 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

linefit-1.0.0-pp38-pypy38_pp73-macosx_10_14_x86_64.whl (117.6 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

linefit-1.0.0-cp312-abi3-win_amd64.whl (129.1 kB view details)

Uploaded CPython 3.12+ Windows x86-64

linefit-1.0.0-cp312-abi3-musllinux_1_1_x86_64.whl (489.3 kB view details)

Uploaded CPython 3.12+ musllinux: musl 1.1+ x86-64

linefit-1.0.0-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (161.5 kB view details)

Uploaded CPython 3.12+ manylinux: glibc 2.17+ x86-64

linefit-1.0.0-cp312-abi3-macosx_11_0_arm64.whl (109.3 kB view details)

Uploaded CPython 3.12+ macOS 11.0+ ARM64

linefit-1.0.0-cp312-abi3-macosx_10_14_x86_64.whl (120.7 kB view details)

Uploaded CPython 3.12+ macOS 10.14+ x86-64

linefit-1.0.0-cp311-cp311-win_amd64.whl (129.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

linefit-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (490.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

linefit-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

linefit-1.0.0-cp311-cp311-macosx_11_0_arm64.whl (110.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

linefit-1.0.0-cp311-cp311-macosx_10_14_x86_64.whl (121.5 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

linefit-1.0.0-cp310-cp310-win_amd64.whl (130.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

linefit-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (490.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

linefit-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

linefit-1.0.0-cp310-cp310-macosx_11_0_arm64.whl (110.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

linefit-1.0.0-cp310-cp310-macosx_10_14_x86_64.whl (121.7 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

linefit-1.0.0-cp39-cp39-win_amd64.whl (130.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

linefit-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (491.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

linefit-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

linefit-1.0.0-cp39-cp39-macosx_11_0_arm64.whl (110.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

linefit-1.0.0-cp39-cp39-macosx_10_14_x86_64.whl (121.9 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

linefit-1.0.0-cp38-cp38-win_amd64.whl (130.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

linefit-1.0.0-cp38-cp38-musllinux_1_1_x86_64.whl (490.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

linefit-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

linefit-1.0.0-cp38-cp38-macosx_11_0_arm64.whl (110.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

linefit-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl (121.6 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file linefit-1.0.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 227584f2dfcd4b05a80c4ce98187703b83213b71346b996927570fdc4c399e86
MD5 3ce1a6ee77a7fba0233fe44ee6a3fb6d
BLAKE2b-256 88056d65aeb4e39b00bd18196c18737ab958f60e931446b91129b3e677f5d6bf

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b00950ed8a9f404b4482059de01ce44e26875934ff8243baff94a93357c70279
MD5 cae9e8172b63c8cf680c603c1601a736
BLAKE2b-256 3ffc2fb2107298ab89d4b1adc594e41b311d48d0d9b88b54e1b3d43cc751d4ab

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d82a2c0406e4cb83297a72406c956103759db6edcf5d69f874f50ecc52a2754e
MD5 27b83bcffbd71995e4e0842b311b61e5
BLAKE2b-256 3f0d4e944076b99b23b541b8e0dc0ee498a624da8b228424c19736b86ee41874

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp310-pypy310_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp310-pypy310_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a5e4ebb3f8162b809cb0ae9ac7a0da165e3b09cb3975aab9221234cb43cf73d3
MD5 ab69e824f2b1d22ed8caa35ed05166b8
BLAKE2b-256 4a7dda3a43d75cf7686fe0adfa6856ef97e906524383696368f5ab5c5d747cbf

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 317513dbefc0c13821c1d63fa0ec900a04b31484719ab1e0c1af8c0363b0c09f
MD5 3ddd435c1e825d92e96ccff6b467ef0c
BLAKE2b-256 e2c7c9d9d4157923f2fac007058751f643977b3896ad3f7b5664e32d576098f7

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b8c094f59edfb62579f7959c2360f62d67ba09fd6d5aef6c7f0a8f62c8b070c
MD5 716c67cc2d08d5bd5e79ecb8b0fe0cf5
BLAKE2b-256 2b81f33c21017615129f475a9c316ddcabebe2e1636d7dc40fddf9c9013e4f61

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e015455cd7fffdf302df811df45c8aee218c2813434664bcb7044b3ea6061c7b
MD5 a5f03a996b2c94840ab0edbe269ba7d4
BLAKE2b-256 4876201dd5aa39257e590175501995e707f7056469d8b352e571afd0d1382522

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp39-pypy39_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp39-pypy39_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c7d28e45c2810daa20ad390e6a944ee3e947548e274e8198f446504420cafcaf
MD5 8457317596bbc50248c2b0fa7cab6a49
BLAKE2b-256 6f930e43c8971e758cd3db12aae1763b0ef3e226045c3ac1d07c1ce2f07a0a06

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 78d8f2c69804f002cbff42cd43f598bf9ce597f86ed25ab324915691dcfe105c
MD5 7baf14c746300574f5359e89e291915a
BLAKE2b-256 bfd555a399d644ed4b98d004d7a29c5e2898e65958ffa71811dfcd384aa512b3

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67d27541064dda9c762c98afb9f37517eed8d0767daa27da8868d6a0db88f242
MD5 472202847265b1198b8e880395ec6e41
BLAKE2b-256 b111fbc9218a94fc7efd01e72b09cb5557858060534907c4011b45605bb39cbe

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50b5a8e16562060fe001ed2a2ec30560a1513b3942f54d64996e961aa86976ad
MD5 c8b00117585ca67f620ab16dd868e73b
BLAKE2b-256 6c3b8227eff270e21411cd47d2fe83c728e3c085621bad1ba4a3d59ee18ea646

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-pp38-pypy38_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-pp38-pypy38_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 34fe2795ea9a1bf412e6f4df16636075b80a9f70103225ec91412449974d5a59
MD5 bcaf543abe61f358f51f5af1896a51fe
BLAKE2b-256 b0413f11ace759a7c1764a23bad0b85427b15610887e03b1c7e7c6c08383ffbe

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp312-abi3-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.0-cp312-abi3-win_amd64.whl
  • Upload date:
  • Size: 129.1 kB
  • Tags: CPython 3.12+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.0-cp312-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 33261b9880aba6cf38835d500f884cea4385b9f7eabc1855ac1d7c14cd3d7534
MD5 d1336c2c4e7e4725f110d1e3334dc5c4
BLAKE2b-256 ef54d143b2042b2a47271968d5a4e6213757544954e4d217a5877f352b732e6c

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp312-abi3-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp312-abi3-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b96715246c24f26e0225944affdcb50b424609c8a85f37064f164695267aa0a7
MD5 ea8f3921b3fc349f082392f53d7d71f9
BLAKE2b-256 399901ba42675f81c91b70a375c481c07e6dcd693f65b371ea6d649f2c6d9271

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d72cf08e777376562f0e891aa396c0bb9c30fdd76bffe6f2b0ce5f46aa434e0f
MD5 7a8cd3167341be7c5179ea1f870009ef
BLAKE2b-256 2e1ff333e4368511ccba98dc4263b75fc0aca2814b28196977bca7271153a523

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp312-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp312-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 94671c26922ed646d2db3e57fa6550be98476599ea5a41d5b3c32d6bde9e7813
MD5 b6da205b612e086c4a43c40521348300
BLAKE2b-256 2764f2da2e57bef02f8cc987681eec60b07e127278abd5f5ffbbef1424beb623

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp312-abi3-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp312-abi3-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c12df02df8b4d0b4230d4f2c9b1c7f14a8e766c0373d87f7256990d5928dcd06
MD5 2d7f6340fb71993e63e01c1957d08cf4
BLAKE2b-256 ef30adc708f4b317c09b949566b6bd9e2a9fa1fbb0c715fec4802d1e7f22ce18

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 129.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9f1058a567fc2eb36089c452e27765b815c0d41206b7c82d6e730a0f6277014c
MD5 e7aa6fc104c7fd3757ecece70dbbac0c
BLAKE2b-256 9c4fd4ea1e915f296ea0f1b7f164b1281fba2c05bb394e7e2017116fe8f406ed

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6b72fa1eb1b3986bf22fea56be022a00f8171023823c5d0640bb3c7a53772b0c
MD5 67df9c304be37aa2765f3578faad6ef8
BLAKE2b-256 0bba09cd927e50b8fe5941142bfd61a65053c6c792cbb1593c6b122dac6897f8

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c67770918aebb44e8d363a635c4e34ecb37f82a93ead1b95e62a574b077b30cc
MD5 8e9fe9cca6529a3f2e8748e907b5fad7
BLAKE2b-256 ce902f7cbbdd7efd14caba9d527de68747875f42833737d926d66fbfc6ed4bf9

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c7137e1485148dd24b4e03ec40213cbd9dffb91feb3525b8f94da0a8d5fe37d
MD5 81c2f3b9e2263a78d06da8f2c2f752f3
BLAKE2b-256 ba0b68bf0e39c80a35a7090b1bf4b93eba1aedd2dc9d1160a1eb7a944a3e1b32

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3a7abd072c3465941cbb4a62154a839d315cfaa98c3ed1b2957eaf3f6a40db47
MD5 fb43a1712decce83d3cb5f6232d7e8bd
BLAKE2b-256 1140d5999a6b95407d72b65310d91b8ab2d1623c6809df692cfbbb816d84ccf2

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 130.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bfd80a87522163b59b0bd322278fa8fe8cb90ed49a043884df7ab185fcd90473
MD5 06140d896e222c07c14891706e28bc7b
BLAKE2b-256 f42b6ca161a33d4a9c35bf8267f09152b45a8779982712c95412f3b79d411dac

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 54703890a98b3558ea67b1744309e64e16c94fe903fc55b61a2aa76e3f9fc380
MD5 656d7aae162b5ad200abcf0ab4da8562
BLAKE2b-256 294324a86985ceec93aaf799cb506b0a4fd8090978d478349312615ab5346e3c

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 389d3f41284803c87558ba6fc3c73b3534642b436f8c81d6361a575c618856cd
MD5 51dc031199bdf8b51927d7ba1aa0c2b0
BLAKE2b-256 0d3bd12b9de08dfc0dfe2a99cb55491362c012a775a27419f8979d19e861a48f

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11badc8aac9c6b2f52a461d1548727f874f217ba38bdbbb914808157ec9f1683
MD5 7423c9fc5575fe076876b8b5966ce0c6
BLAKE2b-256 8ba4842fe3804cbac2ae2173feef3ae0f2c2263649885c30ba88cd63abb5de52

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b1ec0a3a964ab82ae49f89cf89bd0df24b8321ba00c9ab9a5db56ea084930055
MD5 0f9e7de4c4ff5f85319673aad0a4bfd9
BLAKE2b-256 22a12eebde6eeeb28da950402cdc62e5607bcbe6bd6c21d7e09fee867a0224dd

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 130.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b5dff0c34a3a84c71e73bbcdf2ea5c0be3cc5ed92705dbb4a935ef4988e32243
MD5 f8c0525157652e4015e355dbb0f85c61
BLAKE2b-256 7a6594c504a043a9f52240146510d87639072dcb4a02f63956571541ca34790d

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f7da9da6ed628428c36443d5da66c6f7969c17215023c8b6d05b997b20c18dd3
MD5 f60fa4ed798570ea7b53340d1967c275
BLAKE2b-256 8c07ddca4b8e1ce3ce35690ab8cbe160561c62ab780ca51052abe6862b225e30

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70b920030b8cd74727d6e18755885a6620e61005754e34415e3e12fe62dab649
MD5 5e9e7e6e0071b399b3f553cbcce5f019
BLAKE2b-256 4e8e5da55b63330cc66f8bd6f9266ce2e617f90d49e23931107dd6408af23e58

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2dfc75a79ce34a1c12e8e08b7d2c57eafd6fbee6c95a345f0e2f738192c57ed7
MD5 832f23ed82b11f7d71d2623c3e66c930
BLAKE2b-256 48ec74b9c8d634e570fc01fbbc786585184d28c1bf536fe804a421584ea79608

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 91ed3c95813ab1e20f74751c29903711cc4462fb8f475d32dc62d8cd0d7a8531
MD5 76ac80a1a7aa69081ab7e6b249f9cc9a
BLAKE2b-256 c279c64515b6bc075b9e473f02ffc1ef3bf52a0c879c95037aefaabc969aae72

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 130.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fe007b75a1901546c5c9092f40552b16d82ccc1172211749ff2a767056f77402
MD5 9c9906e8dd86501bb20dd6ac3cc6f3dc
BLAKE2b-256 74217a93b54504d341d08b1b738bf33500b650a77ca89e2afd72843114783c4c

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3e9ab3607c90433ad414263a54b3c9eb855eb8079ee333f6d9e98fd58362fd72
MD5 ac33141f0b573f90e76a7f67caf7904f
BLAKE2b-256 dd39eede90c733a864ac9d2ceb615d2a0721bca93fca21e5effc99a809002e5e

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3ccbbdb789fdbf44801b196c430b80bc5cdafcca12f06a71b12d8048c93e5a0
MD5 8f0275d43872088f365e6b94a7a2e87e
BLAKE2b-256 366aa8baf699adb658151d18de7e58a7671620fafb26133be990d10a5ee477e5

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6731df8f33069655abb52e8568cb3af15a412cce448d8055e74c438a225e5360
MD5 735b0d9abdfb0b38e69a7a071df15a11
BLAKE2b-256 976cda67278d06865f013bb6b4800560f1a5d012335a75a4ac4b9607c13d5ad3

See more details on using hashes here.

File details

Details for the file linefit-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b2d515fd21aa6d35429d045b6f35a609e83bc817c53a4a5f11d27c97b8b24d61
MD5 04418120b548349bb7bf83e5bf63f37e
BLAKE2b-256 d687de1fc80a83b7726a9359675459f7cddcca852e83453d24911d96a2d90b74

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page