Skip to main content

Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

Project description

LineFlow: Framework-Agnostic NLP Data Loader in Python

CI codecov

LineFlow is a simple text dataset loader for NLP deep learning tasks.

  • LineFlow was designed to use in all deep learning frameworks.
  • LineFlow enables you to build pipelines via functional APIs (.map, .filter, .flat_map).
  • LineFlow provides common NLP datasets.

LineFlow is heavily inspired by tensorflow.data.Dataset and chainer.dataset.

Basic Usage

lineflow.TextDataset expects line-oriented text files:

import lineflow as lf


'''/path/to/text will be expected as follows:
i 'm a line 1 .
i 'm a line 2 .
i 'm a line 3 .
'''
ds = lf.TextDataset('/path/to/text')

ds.first()  # "i 'm a line 1 ."
ds.all() # ["i 'm a line 1 .", "i 'm a line 2 .", "i 'm a line 3 ."]
len(ds)  # 3
ds.map(lambda x: x.split()).first()  # ["i", "'m", "a", "line", "1", "."]

Example

  • Please check out the examples to see how to use LineFlow, especially for tokenization, building vocabulary, and indexing.

Loads Penn Treebank:

>>> import lineflow.datasets as lfds
>>> train = lfds.PennTreebank('train')
>>> train.first()
' aer banknote berlitz calloway centrust cluett fromstein gitano guterman hydro-quebec ipo kia memotec mlx nahb punts rake regatta rubens sim snack-food ssangyong swapo wachter '

Splits the sentence to the words:

>>> # continuing from above
>>> train = train.map(str.split)
>>> train.first()
['aer', 'banknote', 'berlitz', 'calloway', 'centrust', 'cluett', 'fromstein', 'gitano', 'guterman', 'hydro-quebec', 'ipo', 'kia', 'memotec', 'mlx', 'nahb', 'punts', 'rake', 'regatta', 'rubens', 'sim', 'snack-food', 'ssangyong', 'swapo', 'wachter']

Obtains words in dataset:

>>> # continuing from above
>>> words = train.flat_map(lambda x: x)
>>> words.take(5) # This is useful to build vocabulary.
['aer', 'banknote', 'berlitz', 'calloway', 'centrust']

Further more:

Requirements

  • Python3.6+

Installation

To install LineFlow:

pip install lineflow

Datasets

Is the dataset you want to use not supported? Suggest a new dataset :tada:

Commonsense Reasoning

CommonsenseQA

Loads the CommonsenseQA dataset:

>>> import lineflow.datasets as lfds

>>> train = lfds.CommonsenseQA("train")
>>> dev = lfds.CommonsenseQA("dev")
>>> test = lfds.CommonsenseQA("test")

The items in this datset as follows:

>>> import lineflow.datasets as lfds

>>> train = lfds.CommonsenseQA("train")
>>> train.first()
{"id": "075e483d21c29a511267ef62bedc0461",
 "answer_key": "A",
 "options": {"A": "ignore",
 "B": "enforce",
 "C": "authoritarian",
 "D": "yell at",
 "E": "avoid"},
 "stem": "The sanctions against the school were a punishing blow, and they seemed to what the efforts the school had made to change?"}
}

Language Modeling

Penn Treebank

Loads the Penn Treebank dataset:

import lineflow.datasets as lfds

train = lfds.PennTreebank('train')
dev = lfds.PennTreebank('dev')
test = lfds.PennTreebank('test')

WikiText-103

Loads the WikiText-103 dataset:

import lineflow.datasets as lfds

train = lfds.WikiText103('train')
dev = lfds.WikiText103('dev')
test = lfds.WikiText103('test')

This dataset is preprossed, so you can tokenize each line with str.split:

>>> import lineflow.datasets as lfds
>>> train = lfds.WikiText103('train').flat_map(lambda x: x.split() + ['<eos>'])
>>> train.take(5)
['<eos>', '=', 'Valkyria', 'Chronicles', 'III']

WikiText-2 (Added by @sobamchan, thanks.)

Loads the WikiText-2 dataset:

import lineflow.datasets as lfds

train = lfds.WikiText2('train')
dev = lfds.WikiText2('dev')
test = lfds.WikiText2('test')

This dataset is preprossed, so you can tokenize each line with str.split:

>>> import lineflow.datasets as lfds
>>> train = lfds.WikiText2('train').flat_map(lambda x: x.split() + ['<eos>'])
>>> train.take(5)
['<eos>', '=', 'Valkyria', 'Chronicles', 'III']

Machine Translation

small_parallel_enja:

Loads the small_parallel_enja dataset which is small English-Japanese parallel corpus:

import lineflow.datasets as lfds

train = lfds.SmallParallelEnJa('train')
dev = lfds.SmallParallelEnJa('dev')
test = lfd.SmallParallelEnJa('test')

This dataset is preprossed, so you can tokenize each line with str.split:

>>> import lineflow.datasets as lfds
>>> train = lfds.SmallParallelEnJa('train').map(lambda x: (x[0].split(), x[1].split()))
>>> train.first()
(['i', 'can', "'t", 'tell', 'who', 'will', 'arrive', 'first', '.'], ['誰', 'が', '一番', 'に', '着', 'く', 'か', '私', 'に', 'は', '分か', 'り', 'ま', 'せ', 'ん', '。']

Paraphrase

Microsoft Research Paraphrase Corpus:

Loads the Miscrosoft Research Paraphrase Corpus:

import lineflow.datasets as lfds

train = lfds.MsrParaphrase('train')
test = lfds.MsrParaphrase('test')

The item in this dataset as follows:

>>> import lineflow.datasets as lfds
>>> train = lfds.MsrParaphrase('train')
>>> train.first()
{'quality': '1',
 'id1': '702876',
 'id2': '702977',
 'string1': 'Amrozi accused his brother, whom he called "the witness", of deliberately distorting his evidence.',
 'string2': 'Referring to him as only "the witness", Amrozi accused his brother of deliberately distorting his evidence.'
}

Question Answering

SQuAD:

Loads the SQuAD dataset:

import lineflow.datasets as lfds

train = lfds.Squad('train')
dev = lfds.Squad('dev')

The item in this dataset as follows:

>>> import lineflow.datasets as lfds
>>> train = lfds.Squad('train')
>>> train.first()
{'answers': [{'answer_start': 515, 'text': 'Saint Bernadette Soubirous'}],
 'question': 'To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?',
 'id': '5733be284776f41900661182',
 'title': 'University_of_Notre_Dame',
 'context': 'Architecturally, the school has a Catholic character. Atop the Main Building\'s gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend "Venite Ad Me Omnes". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.'}

Sentiment Analysis

IMDB:

Loads the IMDB dataset:

import lineflow.datasets as lfds

train = lfds.Imdb('train')
test = lfds.Imdb('test')

The item in this dataset as follows:

>>> import lineflow.datasets as lfds
>>> train = lfds.Imdb('train')
>>> train.first()
('For a movie that gets no respect there sure are a lot of memorable quotes listed for this gem. Imagine a movie where Joe Piscopo is actually funny! Maureen Stapleton is a scene stealer. The Moroni character is an absolute scream. Watch for Alan "The Skipper" Hale jr. as a police Sgt.', 0)

Sequence Tagging

CoNLL2000

Loads the CoNLL2000 dataset:

import lineflow.datasets as lfds

train = lfds.Conll2000('train')
test = lfds.Conll2000('test')

Text Summarization

CNN / Daily Mail:

Loads the CNN / Daily Mail dataset:

import lineflow.datasets as lfds

train = lfds.CnnDailymail('train')
dev = lfds.CnnDailymail('dev')
test = lfds.CnnDailymail('test')

This dataset is preprossed, so you can tokenize each line with str.split:

>>> import lineflow.datasets as lfds
>>> train = lfds.CnnDailymail('train').map(lambda x: (x[0].split(), x[1].split()))
>>> train.first()
... # the output is omitted because it's too long to display here.

SciTLDR

Loads the TLDR dataset:

import lineflow.datasets as lfds

train = lfds.SciTLDR('train')
dev = lfds.SciTLDR('dev')
test = lfds.SciTLDR('test')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lineflow-0.6.8.tar.gz (42.2 kB view details)

Uploaded Source

Built Distribution

lineflow-0.6.8-py3-none-any.whl (24.0 kB view details)

Uploaded Python 3

File details

Details for the file lineflow-0.6.8.tar.gz.

File metadata

  • Download URL: lineflow-0.6.8.tar.gz
  • Upload date:
  • Size: 42.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for lineflow-0.6.8.tar.gz
Algorithm Hash digest
SHA256 71bd764868e874e796c6b1c8e01a1e01ed76a3ae8d8539b3010007eb6296465d
MD5 ce71f64a74555722febee92d66c0fa73
BLAKE2b-256 cc0bc9400b5fa331b674ba74d27ef18754c7dcf85cd15aae1b499d7d9438a580

See more details on using hashes here.

File details

Details for the file lineflow-0.6.8-py3-none-any.whl.

File metadata

  • Download URL: lineflow-0.6.8-py3-none-any.whl
  • Upload date:
  • Size: 24.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for lineflow-0.6.8-py3-none-any.whl
Algorithm Hash digest
SHA256 2bbda2a7a713a555294ec2ff1490ee935aa0e7da54cda7b871dc0cefe5d84d8e
MD5 1d1d57d8f63e3f7d99bd128ddef93340
BLAKE2b-256 4223bbffe38b572c5426c11ce2d9323c0519b9889676e20141f3b9479859deea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page