Skip to main content

Linguistic reconstruction with LingPy

Project description

# LingRex: Linguistic Reconstruction with LingPy

[![Build Status](https://github.com/lingpy/lingrex/workflows/tests/badge.svg)](https://github.com/lingpy/lingrex/actions?query=workflow%3Atests) [![codecov.io](http://codecov.io/github/lingpy/lingrex/coverage.svg?branch=master)](http://codecov.io/github/lingpy/lingrex?branch=master) [![DOI](https://zenodo.org/badge/doi/10.5281/zenodo.1544943.svg)](https://doi.org/10.5281/zenodo.1544943) [![PyPI version](https://badge.fury.io/py/lingrex.png)](https://badge.fury.io/py/lingrex)

LingRex offers the code needed for the automatic inference of sound correspondence patterns as described in the following paper:

> List, J.-M. (2019): Automatic inference of sound correspondence patterns across multiple languages. Computational Linguistics 45.1. 137-161. [DOI: 10.1162/coli_a_00344](https://doi.org/10.1162/coli_a_00344)

To test this workflow, please check the workflow code example in tests/workflows/list-2019.

When using this package in your research, please make sure to quote the paper accordingly, and quote the software package as follows:

> List, Johann-Mattis and Forkel, Robert (2021): LingRex: Linguistic Reconstruction with LingPy. [Computer software, Version 1.1.1]. Geneva: Zenodo. [DOI: 10.5281/zenodo.1544943](https://doi.org/10.5281/zenodo.1544943)

Since this software package itself makes use of LingPy’s alignment algorithms, you should also quote the LingPy package itself.

> List, J.-M. and R. Forkel (2021): LingPy. A Python library for quantitative tasks in historical linguistics. Version 2.6.7. Version 2.6.7. Max Planck Institute for Evolutionary Anthropology: Leipzig. https://lingpy.org

## Installation

Install the package via pip:

`shell pip install lingrex `

## Further Examples

The borrowing detection algorithm implemented in LingRex is introduced in the paper:

> List, J.-M. and R. Forkel (2021): Automated identification of borrowings in multilingual wordlists [version 1; peer review: 3 approved, 1 approved with reservations]. Open Research Europe 1.79. 1-11. [DOI: 10.12688/openreseurope.13843.1](https://doi.org/10.12688/openreseurope.13843.1)

If you use this algorithm, please cite LingRex and this paper.

In addition to the paper in which the correspondence pattern inference algorithm was first introduced, LingRex also offers the code to compute the workflow described in the following paper:

> Wu, M.-S., N. Schweikhard, T. Bodt, N. Hill, and J.-M. List (2020): Computer-Assisted Language Comparison. State of the Art. Journal of Open Humanities Data 6.2. 1-14. [DOI: 10.5334/johd.12](https://doi.org/10.5334/johd.12)

To test this workflow, please check the workflow code example in tests/workflows/wu-2020.

If you use this workflow in your work, please quote this paper as well.

In addition, our experiment (with T. Bodt) on predicting words with the help of sound correspondence patterns also made use of the LingRex package.

> Bodt, T. and J.-M. List (2021): Reflex prediction. A case study of Western Kho-Bwa. Diachronica 0.0. 1-38. [DOI: 10.1075/dia.20009.bod](https://doi.org/10.1075/dia.20009.bod)

To test this workflow, please check the workflow code example in tests/workflows/bodt-2019.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lingrex-1.1.1.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

lingrex-1.1.1-py2.py3-none-any.whl (19.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file lingrex-1.1.1.tar.gz.

File metadata

  • Download URL: lingrex-1.1.1.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for lingrex-1.1.1.tar.gz
Algorithm Hash digest
SHA256 24260ab703a23a76557cdc1a1e26f33ca18690edf859231391ba2453d845faf8
MD5 a925af53e073fe871c5a91494b60eadd
BLAKE2b-256 ff30d7c81c65a9e3faa9bfbf2e02e23efc334b7230755abea7f5d386e01501ae

See more details on using hashes here.

File details

Details for the file lingrex-1.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: lingrex-1.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 19.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for lingrex-1.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d1441c161ead78cbb96dd12b0d94e9ff3af74e2e3c0418af5dee6b3b95381aed
MD5 e0c6f9a5597dd50b5485357d1d5468cf
BLAKE2b-256 58b5d7bafdcd0489fd91590e5d3485db34a1ea2f5ecda75eae91b5064bc12fb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page