Flexible Linear Kalman Filter
Project description
linkalman
linkalman
is a python package that solves linear structural time series models with Gaussian noises. Compared with some other popular Kalman filter packages written in python, linkalman has a combination of several advantages:
- Account for partially and fully incomplete measurements
- Flexible and convenient model structure
- Robust and efficient implementation
- Proper implementation for unknown priors
- Built-in numerical and EM algorithm
- Open-source with a comprehensive user manual
- Modular design with intuitive model specification
Installation
linkalman
requires the following packages to run:
- numpy
- pandas
- networkx
- scipy
To install linkalman
, simply use the standard pip
command:
$ pip install linkalman
Example
Here I will provide a simple example using linkalman
. See here for more examples, and user's manual for technical details.
import pandas as pd
import numpy as np
from scipy.optimize import minimize
from linkalman.models import BaseConstantModel as BCM
import matplotlib.pyplot as plt
# Get data
df = pd.read_csv('https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv')
df['x'] = 1
df.set_index('Date', inplace=True)
First we define the system dynamics of a Bayesian Structural Time Series (BSTS) model. Here I define a Stochastic linear trend model to extract the trend information from the time series (referring to the example section of user's manual for details)
def my_f(theta):
sig1 = np.exp(theta[0])
sig2 = np.exp(theta[1])
sig3 = np.exp(theta[2])
F = np.array([[1, 1], [0, 1]])
Q = np.array([[sig1, 0], [0, sig2]])
R = np.array([[sig3]])
H = np.array([[1, 0]])
# Collect system matrices
M = {'F': F, 'Q': Q, 'H': H, 'R': R}
return M
Next we define a solver or optimizer, you can choose any solver you prefer. Here I just use scipy.optimize.minimize
.
def my_solver(param, obj_func, verbose=False, **kwargs):
obj_ = lambda x: -obj_func(x)
res = minimize(obj_, param, **kwargs)
theta_opt = np.array(res.x)
fval_opt = res.fun
return theta_opt, fval_opt
Now we can fit the data. First we initialize the model and feed the system dynamics (my_f
) and solver (my_solver
). You may also pass the keyworded arguments to for my_f
and my_solver
.
model = BCM()
model.set_f(my_f)
model.set_solver(my_solver, method='nelder-mead',
options={'xatol': 1e-8, 'disp': True, 'maxiter': 10000})
theta_init = np.random.rand(3)
model.fit(df, theta_init, y_col=['Births'], x_col=['x'],
method='LLY')
df_LLY = model.predict(df)
That is it! If you want to do additional work, you can do the following to plot a confidence interval around your predictions.
df_LLY['kf_ub'] = df_LLY.Births_filtered + 1.96 * np.sqrt(df_LLY.Births_fvar)
df_LLY['kf_lb'] = df_LLY.Births_filtered - 1.96 * np.sqrt(df_LLY.Births_fvar)
df_LLY = df_LLY[df_LLY.index > '1959-01-01']
df_LLY.index = pd.to_datetime(df_LLY.index)
# Define plot function
def simple_plot(df, col_est, col_actual, col_ub, col_lb, label_est,
label_actual, title, figsize=(12, 8)):
ax = plt.figure(figsize=figsize)
plt.plot(df.index, df[col_est], 'r', label=label_est)
plt.scatter(df_LLY.index, df[col_actual], s=20, c='b',
marker='o', label=label_actual)
plt.fill_between(df.index, df[col_ub], df[col_lb], color='g', alpha=0.2)
ax.legend(loc='right', fontsize=9)
plt.title(title, fontsize=22)
plt.show()
simple_plot(df_LLY, 'Births_filtered', 'Births', 'kf_ub', 'kf_lb',
'Prediction', 'Births', 'Filtered Births Data')
License
3-Clause BSD
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file linkalman-0.11.5.tar.gz
.
File metadata
- Download URL: linkalman-0.11.5.tar.gz
- Upload date:
- Size: 25.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54e7d4e8082be1aedd7ab9d47f1d15b4932a85cf278de98bbf3df680beb15e02 |
|
MD5 | d5dd376c7b3643f0b6744cc9ba6ea8b8 |
|
BLAKE2b-256 | bee577a7e03bd0e87486ef0f7846753efcf63512edf13896ce80a536eceeb073 |