Skip to main content

No project description provided

Project description

linkml-transformer

Status: pre-alpha code

See these slides

This repo contains both:

  • A data model for a model transformation language
  • A reference python implementation

The transformation language is specified in terms of LinkML schemas. It is intended to be a ployglot transformation language, used for specifying how to map data models independent of underlying representation (TSVs, JSON/YAML, RDF, SQL Database, ...).

Use cases include:

  • ETL and mapping from one data model to another
  • Database migrations (one version of a schema to another)
  • Creating "profiles"
  • Specifying mappings between different serializations of a model (e.g. OO to Relational)
  • Mapping between normalized/non-redundant forms and denormalized/query-optimized forms

Data Model

See generated docs

Running the code

linkml-tr --help
Usage: linkml-tr [OPTIONS] COMMAND [ARGS]...

  CLI for linkml-transformer.

Options:
  -v, --verbose
  -q, --quiet TEXT
  --help            Show this message and exit.

Commands:
  derive-schema  Derive a schema from a source schema and a mapping.
  map-data       Map data in a source schema using a transformation.

Examples

See the tests folder for most up to date examples

Mapping between two similar data models

Given a source object

persons:
  - id: P:001
    name: fred bloggs
    primary_email: fred.bloggs@example.com
    age_in_years: 33
    has_familial_relationships:
      - type: SIBLING_OF
        related_to: P:002
    current_address:
      street: 1 oak street
    aliases:
      - a
      - b
    has_medical_history:
      - diagnosis:
          id: C:001
          name: c1
      - diagnosis:
          id: C:002
  - id: P:002
    name: Alison Wu
    has_familial_relationships:
      - type: SIBLING_OF
        related_to: P:001
    has_medical_history:
      - diagnosis:
          id: C:001
          name: c1 (renamed)
organizations:
  - id: ROR:1
    name: Acme

and a corresponding schema, consider the case of mapping to a largely isomorphic schema, with some minor differences:

  • class names are changes (e.g Person to Agent)
  • age is represented as a string, e.g. "33 years"
  • some fields are denormalized

The mapping may look like:

id: my-mappings
title: my mappings
prefixes:
  foo: foo
source_schema: s1
target_schema: s2
class_derivations:
  Container:
    populated_from: Container
    slot_derivations:
      agents:
        populated_from: persons
  Agent:
    populated_from: Person
    slot_derivations:
      
      ## implicitly same name in Agent
      id:

      label:
        populated_from: name

      age:
        expr: "str({age_in_years})+' years'"

      primary_email:

      gender:

      has_familial_relationships:
        populated_from: has_familial_relationships

  FamilialRelationship:
    populated_from: FamilialRelationship
    slot_derivations:
      type:
      related_to:

Deriving Schemas

Formally a mapping consists of a source schema S, a target schema T, and a mapping M.

In practice, any of these can be partially specified and derived from the others.

For example:

  • given S, and T, derive isomorphic mappings based on shared URIs
  • given S and M, derive T by applying M to the schema

See tests/test_mapper/test_schema_mapper.py for examples

Measurements TODO

- id: P:001
  height:
    value: 172.0
    unit: cm

<==>

- id: P:001
  height_in_cm: 172.0

<==>

- id: P:001
  height: "172.0 cm"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

linkml_transformer-0.1.1.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

linkml_transformer-0.1.1-py3-none-any.whl (20.4 kB view details)

Uploaded Python 3

File details

Details for the file linkml_transformer-0.1.1.tar.gz.

File metadata

  • Download URL: linkml_transformer-0.1.1.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for linkml_transformer-0.1.1.tar.gz
Algorithm Hash digest
SHA256 ba60489eb928fa3d0221a494785de0d6d9f3ec1c28d27a10bccc4eed92c11d59
MD5 e0fcd128f35fd894bd6dc9e5dd58714d
BLAKE2b-256 99b50a434e55cd95bd45063d088d692d85cadde790ce1477a3d5f7c79801b082

See more details on using hashes here.

File details

Details for the file linkml_transformer-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for linkml_transformer-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 99a6a2606ed3c56c06e85f9bcd32c7da14f221bd5a3da521638a5c1b7f99da7d
MD5 50c69f85ab2e41196258e6c06af24c76
BLAKE2b-256 c4acf8e2f1c49517e9fe0c917b7d3a83ade63ac9a0e424fe21df4252d523d150

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page