Skip to main content

An experimental tool for the automatic generation of optimized code for linear algebra problems.

Project description

Linnea

Linnea is an experimental tool for the automatic generation of optimized code for linear algebra problems. It is developed at the High-Performance and Automatic Computing group at RWTH Aachen University.

Installation

Linnea requires Python 3.6 and can be installed with pip install git+git://github.com/HPAC/linnea.git. (Depending on your setup, you may have to use pip3 instead of pip.) To uninstall Linnea, use pip uninstall linnea. This also removes the commandline tool.

Development Installation

If you intend to contribute to Linnea, you can install it from local sources by running pip install -e . in your local development directory.

Overview

Linnea is a prototype of a compiler/program synthesis tool that automates the translation of the mathematical description of a linear algebra problem to an efficient sequence of calls to BLAS and LAPACK kernels. The main idea of Linnea is to construct a search graph that represents a large number of programs, taking into account knowledge about linear algebra, numerical linear algebra and high-performance computing. The algebraic nature of the domain is used to reduce the size of the search graph, without reducing the size of the search space that is explored.

The input to Linnea are linear algebra expressions. As operands, matrices, vectors and scalars are supported. Operands can be annotated with properties, such as 'lower triangular' or 'symmetric'. Supported operations are addition, multiplication, transposition and inversion. At the moment, Linnea generates Julia code (see https://julialang.org), using BLAS and LAPACK wrappers whenever possible.

Usage

Linnea can be used in two different ways.

Python Module

At the moment, Linnea is primarily a Python module. An example script for how to use Linnea within Python can found in examples/run_linnea.py. The input expressions are represented as Python objects. As an example, consider the description of a lower triangular linear system (omitting imports):

n = 1000

L = Matrix("L", (n, n))
L.set_property(properties.LOWER_TRIANGULAR)
L.set_property(properties.FULL_RANK)
x = Vector("x", (n, 1))
y = Vector("y", (n, 1))

input = Equations(Equal(y, Times(Inverse(L), x)))

Further examples of input problems are provided in the examples/inputX.py files.

Options can be set with a number of linnea.config.set_X() functions.

Commandline Tool

When installing Linnea via pip, the commandline tool linnea is installed. As input, it takes a description of the input problem in a simple custom language. With this language, the same lower triangular system is described as:

n = 1000

Matrix L(n, n) <LowerTriangular, FullRank>
ColumnVector x(n) <>
ColumnVector y(n) <>

y = inv(L)*x

Further examples are provided in examples/inputX.la. Notice that the primary purpose of this input format is to make it slightly easier to try out Linnea. There are no plans to establish this as an actual language. New features will probably not be immediately available in this language, and the language may change in the future without being backward compatible.

The list of commandline options is available via linnea -h.

Output

As output, Linnea generates a directory structure that contains code files, as well a file containing a description of the derivation graph, the primary datastructure used by Linnea. Which files are generated can be set as options. Likewise, the location of the output can be specified. By default, it is the current directory.

For the linear system from the previous examples, the following code will be generated:

using LinearAlgebra.BLAS
using LinearAlgebra

function algorithm0(ml0, ml1)
    # cost 1e+06
    # L: ml0, full, x: ml1, full
    # tmp1 = (L^-1 x)
    trsv!('L', 'N', 'N', ml0, ml1)

    # tmp1: ml1, full
    # y = tmp1
    return (ml1)
end

Options

Linnea offers a number of options which can be set through linnea.config in Python or as commandline options for the commandline tool. Alternatively, all options can also be specified in a linnea_config.json file (see examples) which has to be located in the same directory where Linnea is run, or at the user's $HOME folder. Both commandline options and linnea.config options override what is specified in linnea_config.json. As a fallback, reasonable default values are used.

There are the following options (those are the names used in Python, the commandline options have slightly different names. See linnea -h):

  • output_code_path The output of Linnea will be stored in this directory. The default is the current directory.

  • output_name Linnea creates a new directory that contains all output files. This is the name of this directory. The default is tmp.

  • language Not available for the commandline tool. For now, the only allowed option is Julia.

  • julia_data_type The data type used in the generated code. Either Float32 or Float64. The default is Float64.

  • merging_branches Whether or not to merge branches in the derivation graph. The default is true.

  • dead_ends Whether or not to eliminate dead ends in the derivation graph early. The default is true.

  • algorithms_limit The upper limit for the number of algorithms that are written to files. The default is 100.

  • strategy The strategy used to find algorithms. Either constructive or exhaustive. The default is constructive.

  • generate_graph Whether or not to generate a .gv file of the derivation graph. The default is false.

  • graph_style Style of the derivation graph. Either full, simple, or minimal. The default is full. Only applies if generate_graph is set to True.

  • generate_derivation Whether or not to generate a description of how the algorithms were derived. The default is false.

  • generate_code Whether or not to generate the actual code of the algorithms. The default is true.

  • generate_experiments Whether or not to generate code that can be used to run the algorithms. The default is false.

  • verbosity Level of verbosity. The default is 1.

Publications

A number of publications that discuss different aspects of Linnea can be found here.

Contributors

  • Henrik Barthels
  • Marcin Copik
  • Diego Fabregat Traver
  • Julius Hohnerlein
  • Manuel Krebber

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

linnea-0.1.dev1.tar.gz (132.3 kB view details)

Uploaded Source

Built Distribution

linnea-0.1.dev1-py3-none-any.whl (167.8 kB view details)

Uploaded Python 3

File details

Details for the file linnea-0.1.dev1.tar.gz.

File metadata

  • Download URL: linnea-0.1.dev1.tar.gz
  • Upload date:
  • Size: 132.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.7.1

File hashes

Hashes for linnea-0.1.dev1.tar.gz
Algorithm Hash digest
SHA256 028a4fe611f63de5c9ead4df3996134090fd17c7a9109d49cbcf3d037d90b132
MD5 f536fe03a44735c5a9eeeec44f35b8f7
BLAKE2b-256 351af2364629e42f5106c38de2d138a167155515026b43419cc9808538e920b2

See more details on using hashes here.

File details

Details for the file linnea-0.1.dev1-py3-none-any.whl.

File metadata

  • Download URL: linnea-0.1.dev1-py3-none-any.whl
  • Upload date:
  • Size: 167.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.7.1

File hashes

Hashes for linnea-0.1.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 15aeb08e8d68fda1ed622dd3f2d4d7b3ca44dc42c0e596c71da658972c997d74
MD5 6f90212897d0f58b311e7bc80d42b20a
BLAKE2b-256 ce6b090b5892a1943e634dd3abfef6ecde5f1278592df6676575bcb64075dd0f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page