Linear PDE Solvers as Gaussian Process Inference
Project description
LinPDE-GP: Linear PDE Solvers based on GP Regression
Code for the Paper "Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers"
Getting Started
Cloning the Repository
This repository includes Git submodules, so it is best cloned via
git clone --recurse-submodules git@github.com:marvinpfoertner/linpde-gp.git
If you forgot the --recurse-submodules
flag when cloning, simply run
git submodule update --init --recursive
inside the repository.
Installing a Full Development Environment
cd path/to/linpde-gp
pip install -r dev-requirements.txt
Citation
If you use this software, please cite our paper.
@misc{Pfoertner2022LinPDEGP,
author = {Pf\"ortner, Marvin and Steinwart, Ingo and Hennig, Philipp and Wenger, Jonathan},
title = {Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers},
year = {2022},
publisher = {arXiv},
doi = {10.48550/arxiv.2212.12474},
url = {https://arxiv.org/abs/2212.12474}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
linpde_gp-0.0.1-py3-none-any.whl
(100.9 kB
view details)
File details
Details for the file linpde_gp-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: linpde_gp-0.0.1-py3-none-any.whl
- Upload date:
- Size: 100.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 44d0e2024aac35b53552b9279baabeb2eae3ab96caf8a422a8d865780762fc15 |
|
MD5 | 417b0c934bd05c18e23ab50860f899e3 |
|
BLAKE2b-256 | 29633aed01589909dc1fd5d8ff4d8ffbbb2d8678ca41709ac7fc542cffd7c133 |