Skip to main content

Extends python's list builtin with fun, robust functionality - .NET's Language Integrated Queries (Linq) and more. Write clean code with powerful syntax.

Project description

Linqit!

Extends python's list builtin with fun, robust functionality - .NET's Language Integrated Queries (Linq) and more.
Write clean code with powerful syntax.

pip install linqit

Stop using loops, complex conditions, list comprehension and filters.
Doesn't it looks better?

from seven_dwwarfs import Grumpy, Happy, Sleepy, Bashful, Sneezy, Dopey, Doc
from linqit import List

# Go ahead and fill the list with whatever you want... like a list of <Programmer> objects.
programmers = List()
Avi = type("Avi", (), {})
elon_musk = Entrepreneur(talented=True)

# Then play:
last_hot_pizza_slice = (
    programmers.where(lambda e: e.experience > 15)
    .except_for(elon_musk)
    .of_type(Avi)
    .take(3)  # [<Avi>, <Avi>, <Avi>]
    .select(lambda avi: avi.lunch)  # [<Pizza>, <Pizza>, <Pizza>]
    .where(lambda p: p.is_hot() and p.origin != "Pizza Hut")
    .last()  # <Pizza>
    .slices.last()  # <PizzaSlice>
)

# What do you think?

We all use multiple aggregations in our code, while multiple filters/comprehensions are not pythonic at all.
The whole idea is is to use it for nested, multiple filters/modifications :).
Some of the methods might look ridiculous for a single calls, comparing to the regular python syntax.
Here are some use cases:

Methods:

all
any
concat
contains
distinct
except_for
first
get_by_attr
intersect
last
select
skip
take
where
of_type

Properties:

sum
min
max
avg
sorted

Deeper - Let's play with a list of people, a custom type.

import List

class Person():
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __repr__(self):
        return f'Person(name="{self.name}", age={self.age})')


# Creating a list of people
avi, bill, bob, harry = Person('Avi', 23), Person('Bill', 41), Person('Bob', 77), Person('Harry', 55)

people = List(avi, bill, bob, harry)

Use LINQ selections, write cleaner code

people = people.where(lambda p: p.age > 23) # [<Person name="Bill" age="41">, <Person name="Bob" age="77">, <Person name="Harry" age="55">]
people.first()                                              # <Person name="Bill" age="41">
people.last()                                               # <Person name="Harry" age="55">
people.any(lambda p: p.name.lower().startswith('b'))        # True
people.where(age=55)                         # [<Person name="Harry" age="55">]
people.skip(3).any()                                        # False
people.skip(2).first()                                      # <Person name="Harry" age="55">

# Isn't it better than "for", "if", "else", "filter", "map" and list comprehensions in the middle of your code?

More selections

new_kids_in_town = [Person('Chris', 18), Person('Danny', 16), Person('John', 17)]
people += new_kids_in_town # Also works: people = people.concat(new_kids_in_town)

teenagers = people.where(lambda p: 20 >= p.age >= 13)
danny = teenagers.first(lambda t: t.name == 'Danny')            # <Person name="Danny" age="16">
oldest_teen = teenagers.order_by(lambda t: t.age).last()                                  # <Person name="John" age="17">

Let's make python more dynamic

names = people.name                                             # ['Avi', 'Bill', 'Bob', 'Harry', 'Chris', 'John']
ages = people.age                                               # [23, 41, 77, 55, 18, 17]
teenagers_names = teenagers.name                                # ['Chris', 'Danny', 'John']
teenagers_names.take(2).except_for(lambda n: n == 'Danny')      # ['Chris']
teenagers.age.min                                               # 16
teenagers.age.avg                                               # 17
teenagers.age.max                                               # 18

Test Coverage

  linqit git:(master)  coverage report                    
Name                  Stmts   Miss  Cover
-----------------------------------------
linqit/__init__.py        2      0   100%
linqit/linq_list.py     101     11    89%
tests/__init__.py         0      0   100%
tests/test_list.py      203      0   100%
-----------------------------------------
TOTAL                   306     11    96%

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

linqit-0.1.5.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

linqit-0.1.5-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file linqit-0.1.5.tar.gz.

File metadata

  • Download URL: linqit-0.1.5.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for linqit-0.1.5.tar.gz
Algorithm Hash digest
SHA256 0b0cacada5d63e667af8662db4c599ec12f3dca600e24ee9bff95afc18e7dcb8
MD5 761066e0d0ae361044f61c71f0daa4a8
BLAKE2b-256 bd9bad420050149b52f77ee01c61b1ab28005701f85c45faa6fce1b4ec7fbc51

See more details on using hashes here.

File details

Details for the file linqit-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: linqit-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for linqit-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 dba8b242bc491c17928a123268e499408f3428d4bb30f140d2f1a8a64f48e4dc
MD5 e5be3f96f762b7765db51af4862d5d4d
BLAKE2b-256 03927a1118b9d754c0191d49494f4de29debc1d2d3423b25c80fc983c9e251bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page