Skip to main content

Package to support the research of LIOM.

Project description

Liom Toolkit

This package supports the research being done by the Laboratoire d’Imagerie Optique et Moléculaire at Polytechnique Montréal. It hosts a collection of scripts used to process and analyze data collected by the lab.

Build and Publish Toolkit Documentation Status

Installation

The package can be installed using pip:

pip install liom-toolkit

Due to the complicated requirements, a detailed installation guide is provided below.

Usage

Demonstrations of some of the functionalities of the package can be found in the notebooks in the LIOM Notebooks repository. The repository can be found here: LIOM Notebooks

Requirements

The package requires the following packages to be installed and will attempt to install them using installation:

  • antspyx
  • tqdm
  • scikit-image
  • ome-zarr
  • nibabel
  • zarr
  • h5py
  • pynrrd
  • PyWavelets
  • SimpleITK
  • allensdk
  • dask
  • opencv-python
  • torch
  • torchvision
  • wandb
  • patchify
  • natsort
  • albumentations

To create an anaconda environment with all the required packages, run the following commands:

conda create -n <name>
conda activate <name>
conda install python=3.10

# Install Pytorch at this point, follow the instructions on the Pytorch website:
# https://pytorch.org/get-started/locally/
# Make sure the right version is installed for your system. Check for CUDA compatibility.
# For example, for Linux with a CUDA compatible GPU:
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
# For MacOS:
conda install pytorch::pytorch torchvision torchaudio -c pytorch

# The lines below are for Apple Silicon specifically. 
# Hdf5 needs to be installed using homebrew.
# Tables is used by the allenSDK and requires hdf5 to be installed.
# On apple silicon, HDF5 is not automatically installed by tables or detected on the system.
brew install hdf5
HDF5_DIR=/opt/homebrew/Cellar/hdf5/1.14.3_1 pip install tables

# From now on pip will be used to install the packages. Some packages are not available on conda, or are out of date.
pip install allensdk
pip install antspyx
pip install liom-toolkit

# To build the documentation of the package
pip install sphinx-rtd-theme
pip install sphinxcontrib-apidoc

# To run the LIOM Notebooks
pip install jupyter

Package Structure

The package contains the following modules:

Registration

The registration module is concerned with performing registration on brain imagery. It hosts a collection of scripts for registering mouse brains to the Allen Atlas as well as functions for creating brain templates to use in registration.

Segmentation

The segmentation module is concerned with segmenting brain imagery. It contains methods for segmenting brain images into different regions of interest. The vseg submodule contains methods for segmenting vasculature using deep learning using a U-net architecture. The pretrained model is trained on LSFM data.

Utils

Various utility functions used by the other modules. These include function for converting between the different data files used within the lab.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

liom_toolkit-0.8.12.tar.gz (55.7 kB view details)

Uploaded Source

Built Distribution

liom_toolkit-0.8.12-py3-none-any.whl (57.2 kB view details)

Uploaded Python 3

File details

Details for the file liom_toolkit-0.8.12.tar.gz.

File metadata

  • Download URL: liom_toolkit-0.8.12.tar.gz
  • Upload date:
  • Size: 55.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for liom_toolkit-0.8.12.tar.gz
Algorithm Hash digest
SHA256 4976aa1a43c44809f2134c7c13513ad45b55205de13b7cfa7be95b0e8cba3bc1
MD5 e2400989bb25abe035855efba8643de8
BLAKE2b-256 162b1a7192c172c5feb801bbc0bc799729124112e7f88df2929ebf1d328e94bf

See more details on using hashes here.

File details

Details for the file liom_toolkit-0.8.12-py3-none-any.whl.

File metadata

File hashes

Hashes for liom_toolkit-0.8.12-py3-none-any.whl
Algorithm Hash digest
SHA256 ae119923ff0b8e2546a125cbc7dce476011747a5d98487076ef57dc6327b5d04
MD5 6b68b319b3e5fc0204f6c8ac8eb5ba2a
BLAKE2b-256 819889bc69e91a2c2cfcd48bfdf68a09b11531fceeedff8742752a152af4250a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page