Skip to main content

Towards automated general intelligence.

Project description

PyPI - Version PyPI - Downloads GitHub License

PyPI | Documentation | Website | Discord

LionAGI

Towards Automated General Intelligence

LionAGI is a Python intelligent agent framework that combines data manipulation with AI tools, aiming to simplify the integration of advanced machine learning tools, such as Large Language Models (i.e. OpenAI's GPT), with production-level data-centric projects.

Install LionAGI with pip:

pip install lionagi

Download the .env_template file, input your OPENAI_API_KEY, save the file, rename as .env and put in your project's root directory.

Features

  • Robust performance. LionAGI is written in almost pure python. With minimum external dependency (aiohttp, httpx, python-dotenv, tiktoken)
  • Efficient data operations for reading, chunking, binning, writing, storing and managing data.
  • Fast interaction with LLM services like OpenAI with configurable rate limiting concurrent API calls for maximum throughput.
  • Create a production ready LLM application in hours. Intuitive workflow management to streamline and expedite the process from idea to market.

Currently, LionAGI only natively support OpenAI API calls, support for other LLM providers as well as open source models will be integrated in future releases. LionAGI is designed to be async only, please check python official documentation on how async work: here

Notice:

  • calling API with maximum throughput over large set of data with advanced models i.e. gpt-4 can get EXPENSIVE IN JUST SECONDS,
  • please know what you are doing, and check the usage on OpenAI regularly
  • default rate limits are set to be tier 1 of OpenAI model gpt-4-1104-preview, please check the OpenAI usage limit documentation you can modify token rate parameters to fit different use cases.
  • Documentation is under process

Quick Start

The following example shows how to use LionAGI's Session object to interact with gpt-4 model:

import lionagi as li

# define system messages, context and user instruction
system = "You are a helpful assistant designed to perform calculations."
instruction = {"Addition":"Add the two numbers together i.e. x+y"}
context = {"x": 10, "y": 5}

# Initialize a session with a system message
calculator = li.Session(system=system)

# run a LLM API call
result = await calculator.initiate(instruction=instruction,
                                   context=context,
                                   model="gpt-4-1106-preview")

print(f"Calculation Result: {result}")

Visit our notebooks for our examples.

Community

We encourage contributions to LionAGI and invite you to enrich its features and capabilities. Engage with us and other community members Join Our Discord

Citation

When referencing LionAGI in your projects or research, please cite:

@software{Li_LionAGI_2023,
  author = {Haiyang Li},
  month = {12},
  year = {2023},
  title = {LionAGI: Towards Automated General Intelligence},
  url = {https://github.com/lion-agi/lionagi},
}

Star History

Star History Chart

Requirements

Python 3.9 or higher.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lionagi-0.0.110.tar.gz (38.0 kB view details)

Uploaded Source

Built Distribution

lionagi-0.0.110-py3-none-any.whl (40.1 kB view details)

Uploaded Python 3

File details

Details for the file lionagi-0.0.110.tar.gz.

File metadata

  • Download URL: lionagi-0.0.110.tar.gz
  • Upload date:
  • Size: 38.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for lionagi-0.0.110.tar.gz
Algorithm Hash digest
SHA256 ec9f91d799f3852cd0baa66961cb9863267843f1168cba317cb717215bc5cd65
MD5 6fd44f1a1a415ead1fef2ff250703023
BLAKE2b-256 4f8da10aee67d5bfe5c553ea4bfc9d94a0caab45c4aee30189d6a026428cbb61

See more details on using hashes here.

File details

Details for the file lionagi-0.0.110-py3-none-any.whl.

File metadata

  • Download URL: lionagi-0.0.110-py3-none-any.whl
  • Upload date:
  • Size: 40.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for lionagi-0.0.110-py3-none-any.whl
Algorithm Hash digest
SHA256 1fa6b9fefe450ad437c35709c893dffef2b3066fd87a31d55fee3ebd9fa74b08
MD5 f4125c1908b8fa0876c3fd55805a749f
BLAKE2b-256 6cfbb3ad776ebfd21927ac2fc8dc56c1d2c101bb690694774ccbdb97547a3c36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page