Skip to main content

Literature Scanner

Project description

ProjectStatus Version BuildStatus Coverage License PythonVersions Publication

LISC is a package for collecting and analyzing the scientific literature.

Overview

LISC acts as a wrapper and connector between available APIs, allowing users to collect data from and about scientific articles, and perform analyses on this data, such as performing automated meta-analyses.

A curated list of some projects enabled by LISC is available on the projects page.

Supported APIs & Collection Approaches

Supported APIs and data collection approaches include:

  • The EUtils API, which provides access to literature data, including the Pubmed database, from which text and meta-data from identified articles can be collected, as well as analyses such as counts and co-occurrences of terms.

  • The OpenCitations API, which provides access to citation data, from which citation and reference information can be collected.

Analysis & Other Functionality

In addition to connecting to external APIs, LISC also provides:

  • A database structure, and save and load utilities for storing collected data

  • Custom data objects for managing and preprocessing collected data

  • Functions and utilities to analyze collected data

  • Data visualization functions for plotting collected data and analysis outputs

Documentation

Documentation is available on the documentation site.

This documentation includes:

  • Tutorials: with a step-by-step guide through the module and how to use it

  • Examples: demonstrating example analyses and use cases, and other functionality

  • API list: which lists and describes all the code and functionality available in the module

  • Reference: with information for how to reference and report on using the module

For a curated list of projects that use LISC check out the projects page.

Dependencies

LISC is written in Python 3, and requires Python >= 3.7 to run.

Requirements:

Optional dependencies, used for plotting, analyses & testing:

Install

Stable releases of LISC are released on the Github release page, and on PYPI.

Descriptions of updates and changes across versions are available in the changelog.

Stable Release Version

To install the latest stable release, you can install from pip:

$ pip install lisc

LISC can also be installed with conda, from the conda-forge channel:

$ conda install -c conda-forge lisc

Development Version

To get the development version (updates that are not yet published to pip), you can clone this repository.

$ git clone https://github.com/lisc-tools/lisc

To install this cloned copy of LISC, move into the directory you just cloned, and run:

$ pip install .

Editable Version

If you want to install an editable version, for making contributions, download the development version as above, and run:

$ pip install -e .

Reference

If you use this code in your project, please cite

Donoghue, T. (2018) LISC: A Python Package for Scientific Literature Collection and Analysis. Journal of Open Source Software, 4(41), 1674. DOI: 10.21105/joss.01674

Direct Link: https://doi.org/10.21105/joss.01674

More information for how to cite this method can be found on the reference page.

Contribute

This project welcomes and encourages contributions from the community!

To file bug reports and/or ask questions about this project, please use the Github issue tracker.

To see and get involved in discussions about the module, check out:

  • the issues board for topics relating to code updates, bugs, and fixes

  • the development page for discussion of potential major updates to the module

When interacting with this project, please use the contribution guidelines and follow the code of conduct.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lisc-0.3.0.tar.gz (72.7 kB view details)

Uploaded Source

Built Distribution

lisc-0.3.0-py3-none-any.whl (99.2 kB view details)

Uploaded Python 3

File details

Details for the file lisc-0.3.0.tar.gz.

File metadata

  • Download URL: lisc-0.3.0.tar.gz
  • Upload date:
  • Size: 72.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.3

File hashes

Hashes for lisc-0.3.0.tar.gz
Algorithm Hash digest
SHA256 741d87d9da9b1f9816a1d0aece58462bb8b526f8a8f91d98c01e93f74e206633
MD5 75b81573badd60fe9195e4da32c8621f
BLAKE2b-256 33669d6cf889c275be1e000ebe75da23448cdda4d7fa064bf657761ac18ee684

See more details on using hashes here.

File details

Details for the file lisc-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: lisc-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 99.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.3

File hashes

Hashes for lisc-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2e2d68f6e2e30c50c06ab039598adc11ee8884ede400858be908ea22af5c0abb
MD5 e939f0750200f2b121c9d6319d69d2db
BLAKE2b-256 6a863a012c0a5c8ccac8febf47b96c8ad20b5cf0ccfad1a93d5f66c48690e181

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page