Skip to main content

list orm methods and shortcuts for table type of dict-list

Project description

Note: This documentation is for older version of listorm as 0.x.x

View documentation of listorm after version 1.0


Installation of older version

pip install listorm==0.2.16


import listorm as ls

1-1. Basic useage - create a Listorm Object

1)Listorm Ojbect is derived from list

2)The Elements of Listorm Object is 'Scheme' derived from dict

scheme1 = ls.Scheme({'name': 'park', 'age': 15, 'phone':None})
scheme2 = ls.Scheme({'name': 'kim', 'age':5, 'location': 'Seoul', 'phone': '111-222-333'})
# if add operating smart overwrite (overwrite if value is none on Same key)
scheme1+scheme2
{'age': 15, 'location': 'Seoul', 'name': 'park', 'phone': '111-222-333'}
# The List within different key of dict
lst = [
    {'name': 'Hong', 'age': 18, 'location': 'Korea'},
    {'name': 'Yuki', 'age': 19,},
    {'name': 'Lee', 'age': 12, 'phone': '010-2451-1532'},   
]
# Auto normailize: set same keys for each record(set to None if key does not exists)
ls.Listorm(lst)
[{'age': 18, 'location': 'Korea', 'name': 'Hong', 'phone': None},
 {'age': 19, 'location': None, 'name': 'Yuki', 'phone': None},
 {'age': 12, 'location': None, 'name': 'Lee', 'phone': '010-2451-1532'}]

1-2. Basic useage - retrieve and parsing data

# Customer's info in a Shopping mall
userTable = [
    {'name': 'Hong', 'gender': 'M', 'age': 18, 'location': 'Korea'},
    {'name': 'Charse', 'gender': 'M', 'age': 19, 'location': 'USA'},
    {'name': 'Lyn', 'gender': 'F', 'age': 28, 'location': 'China'},
    {'name': 'Xiaomi', 'gender': 'M', 'age': 15, 'location': 'China'},
    {'name': 'Park', 'gender': 'M', 'age': 29, 'location': 'Korea'},
    {'name': 'Smith', 'gender': 'M', 'age': 17, 'location': 'USA'},
    {'name': 'Lee', 'gender': 'F', 'age': 12, 'location': 'Korea'},
]
#select Columns
lst_customer = ls.Listorm(userTable)
lst_customer.select('name', 'location')
[{'location': 'Korea', 'name': 'Hong'},
 {'location': 'USA', 'name': 'Charse'},
 {'location': 'China', 'name': 'Lyn'},
 {'location': 'China', 'name': 'Xiaomi'},
 {'location': 'Japan', 'name': 'Yuki'},
 {'location': 'Korea', 'name': 'Park'},
 {'location': 'USA', 'name': 'Smith'},
 {'location': 'Korea', 'name': 'Lee'}]
#select Columns only with values, 2dArry
lst_customer = ls.Listorm(userTable)
lst_customer.select('name', 'location', values=True)
[('Hong', 'Korea'),
 ('Charse', 'USA'),
 ('Lyn', 'China'),
 ('Xiaomi', 'China'),
 ('Yuki', 'Japan'),
 ('Park', 'Korea'),
 ('Smith', 'USA'),
 ('Lee', 'Korea')]
#select Columns only with values, Similar to select(*args, values=True)
lst_customer = ls.Listorm(userTable)
lst_customer.row_values('name', 'location')
[['Hong', 'Korea'],
 ['Charse', 'USA'],
 ['Lyn', 'China'],
 ['Xiaomi', 'China'],
 ['Yuki', 'Japan'],
 ['Park', 'Korea'],
 ['Smith', 'USA'],
 ['Lee', 'Korea']]
#filtering
lst_customer = ls.Listorm(userTable)
lst_customer.filter(where=lambda row:row.age > 18)
[{'age': 19, 'gender': 'M', 'location': 'USA', 'name': 'Charse'},
 {'age': 28, 'gender': 'F', 'location': 'China', 'name': 'Lyn'},
 {'age': 19, 'gender': 'F', 'location': 'Japan', 'name': 'Yuki'},
 {'age': 29, 'gender': 'M', 'location': 'Korea', 'name': 'Park'}]
# With Method Chaining
lst_customer = ls.Listorm(userTable)
lst_customer.select('name', 'location', 'age').filter(where=lambda row:row['age'] > 18)
[{'age': 19, 'location': 'USA', 'name': 'Charse'},
 {'age': 28, 'location': 'China', 'name': 'Lyn'},
 {'age': 19, 'location': 'Japan', 'name': 'Yuki'},
 {'age': 29, 'location': 'Korea', 'name': 'Park'}]
# Get a Column values
lst_customer = ls.Listorm(userTable)
lst_customer.column_values('age')
[18, 19, 28, 15, 19, 29, 17, 12]
# Get a Column values unique
lst_customer = ls.Listorm(userTable)
lst_customer.unique('location')
{'China', 'Japan', 'Korea', 'USA'}
# Get a Column values count
lst_customer = ls.Listorm(userTable)
lst_customer.value_count('location')
Counter({'China': 2, 'Japan': 1, 'Korea': 3, 'USA': 2})
  1. Basic useage - modifying and update data
# change number type
numbers = [
    {'flt': 0.5, 'string': '123', 'string_float': '123.5', 
     'int': 412, 'string_int': '5123', 'blabla': 'what?'
    }
]

lst_numbers = ls.Listorm(numbers)

# column name and example of types to change, if faild to change, example value will be default value
lst_numbers.set_number_type(flt='', string=0.0, string_float=0, int='', string_int=0, blabla=0)
[{'blabla': 0,
  'flt': '0.5',
  'int': '412',
  'string': 123.0,
  'string_float': 123,
  'string_int': 5123}]
# modify by record qpplied function
lst_customer = ls.Listorm(userTable)
lst_customer.apply_row(
    age= lambda row:'{}_{}'.format(row.gender, row.age),
    name = lambda row:'{}_{}_{}'.format(row.gender, row.age, row.name),
)
[{'age': 'M_18', 'gender': 'M', 'location': 'Korea', 'name': 'M_M_18_Hong'},
 {'age': 'M_19', 'gender': 'M', 'location': 'USA', 'name': 'M_M_19_Charse'},
 {'age': 'F_28', 'gender': 'F', 'location': 'China', 'name': 'F_F_28_Lyn'},
 {'age': 'M_15', 'gender': 'M', 'location': 'China', 'name': 'M_M_15_Xiaomi'},
 {'age': 'F_19', 'gender': 'F', 'location': 'Japan', 'name': 'F_F_19_Yuki'},
 {'age': 'M_29', 'gender': 'M', 'location': 'Korea', 'name': 'M_M_29_Park'},
 {'age': 'M_17', 'gender': 'M', 'location': 'USA', 'name': 'M_M_17_Smith'},
 {'age': 'F_12', 'gender': 'F', 'location': 'Korea', 'name': 'F_F_12_Lee'}]
# modify by value only applied function
lst_customer = ls.Listorm(userTable)
lst_customer.map(gender=lambda val:{'M':'Male', 'F':'Female'}.get(val, val))
[{'age': 18, 'gender': 'Male', 'location': 'Korea', 'name': 'Hong'},
 {'age': 19, 'gender': 'Male', 'location': 'USA', 'name': 'Charse'},
 {'age': 28, 'gender': 'Female', 'location': 'China', 'name': 'Lyn'},
 {'age': 15, 'gender': 'Male', 'location': 'China', 'name': 'Xiaomi'},
 {'age': 19, 'gender': 'Female', 'location': 'Japan', 'name': 'Yuki'},
 {'age': 29, 'gender': 'Male', 'location': 'Korea', 'name': 'Park'},
 {'age': 17, 'gender': 'Male', 'location': 'USA', 'name': 'Smith'},
 {'age': 12, 'gender': 'Female', 'location': 'Korea', 'name': 'Lee'}]
# rename columns
lst_customer = ls.Listorm(userTable)
lst_customer.rename(name='who', location='nation')
[{'age': 18, 'gender': 'M', 'nation': 'Korea', 'who': 'Hong'},
 {'age': 19, 'gender': 'M', 'nation': 'USA', 'who': 'Charse'},
 {'age': 28, 'gender': 'F', 'nation': 'China', 'who': 'Lyn'},
 {'age': 15, 'gender': 'M', 'nation': 'China', 'who': 'Xiaomi'},
 {'age': 19, 'gender': 'F', 'nation': 'Japan', 'who': 'Yuki'},
 {'age': 29, 'gender': 'M', 'nation': 'Korea', 'who': 'Park'},
 {'age': 17, 'gender': 'M', 'nation': 'USA', 'who': 'Smith'},
 {'age': 12, 'gender': 'F', 'nation': 'Korea', 'who': 'Lee'}]
# adding new columns by record applied function
lst_customer = ls.Listorm(userTable)
lst_customer.add_columns(is_child=lambda row:row.age<15).select('name', 'age', 'is_child')
[{'age': 18, 'is_child': False, 'name': 'Hong'},
 {'age': 19, 'is_child': False, 'name': 'Charse'},
 {'age': 28, 'is_child': False, 'name': 'Lyn'},
 {'age': 15, 'is_child': False, 'name': 'Xiaomi'},
 {'age': 19, 'is_child': False, 'name': 'Yuki'},
 {'age': 29, 'is_child': False, 'name': 'Park'},
 {'age': 17, 'is_child': False, 'name': 'Smith'},
 {'age': 12, 'is_child': True, 'name': 'Lee'}]
# get top of records by N
lst_customer = ls.Listorm(userTable)
lst_customer.top('age', n=2) # get oldest 2 people in Listorm
[{'age': 29, 'gender': 'M', 'location': 'Korea', 'name': 'Park'},
 {'age': 28, 'gender': 'F', 'location': 'China', 'name': 'Lyn'}]
# get top of records by percentage(if 0<n<1)
lst_customer = ls.Listorm(userTable)
lst_customer.top('age', n=0.5) # get oldest people by top 50% of age
[{'age': 29, 'gender': 'M', 'location': 'Korea', 'name': 'Park'},
 {'age': 28, 'gender': 'F', 'location': 'China', 'name': 'Lyn'},
 {'age': 19, 'gender': 'M', 'location': 'USA', 'name': 'Charse'},
 {'age': 19, 'gender': 'F', 'location': 'Japan', 'name': 'Yuki'}]

3 . Advanced useage - sorting, grouping, join

# 1.orderby location ASC age DESC
lst_customer = ls.Listorm(userTable)
lst_customer.orderby('location', '-age')
[{'age': 28, 'gender': 'F', 'location': 'China', 'name': 'Lyn'},
 {'age': 15, 'gender': 'M', 'location': 'China', 'name': 'Xiaomi'},
 {'age': 19, 'gender': 'F', 'location': 'Japan', 'name': 'Yuki'},
 {'age': 29, 'gender': 'M', 'location': 'Korea', 'name': 'Park'},
 {'age': 18, 'gender': 'M', 'location': 'Korea', 'name': 'Hong'},
 {'age': 12, 'gender': 'F', 'location': 'Korea', 'name': 'Lee'},
 {'age': 19, 'gender': 'M', 'location': 'USA', 'name': 'Charse'},
 {'age': 17, 'gender': 'M', 'location': 'USA', 'name': 'Smith'}]
# 2-1groupby location, retrieve gender count and max age
lst_customer = ls.Listorm(userTable)
lst_customer.groupby('location', age=max, gender=len)
[{'age': 28, 'gender': 2, 'location': 'China'},
 {'age': 19, 'gender': 1, 'location': 'Japan'},
 {'age': 29, 'gender': 3, 'location': 'Korea'},
 {'age': 19, 'gender': 2, 'location': 'USA'}]
# 2-2.you can rename retrieving columns name which set by grouped result 
lst_customer = ls.Listorm(userTable)
lst_customer.groupby('location', 
            age=max, gender=len, location=len, 
            renames={'age':'Oldest', 'gender': 'GenderCount', 'location': 'locationCount'}
    )
[{'GenderCount': 2, 'Oldest': 28, 'locationCount': 2},
 {'GenderCount': 1, 'Oldest': 19, 'locationCount': 1},
 {'GenderCount': 3, 'Oldest': 29, 'locationCount': 3},
 {'GenderCount': 2, 'Oldest': 19, 'locationCount': 2}]
# 2-2.you can include extra column value(value might be last record of group)
lst_customer = ls.Listorm(userTable)
lst_customer.groupby('location',
            age=max, gender=len, location=len, 
            renames={'age':'Oldest', 'gender': 'GenderCount', 'location': 'locationCount'},
            extra_columns = ['location']
    )
[{'GenderCount': 2, 'Oldest': 28, 'location': 'China', 'locationCount': 2},
 {'GenderCount': 1, 'Oldest': 19, 'location': 'Japan', 'locationCount': 1},
 {'GenderCount': 3, 'Oldest': 29, 'location': 'Korea', 'locationCount': 3},
 {'GenderCount': 2, 'Oldest': 19, 'location': 'USA', 'locationCount': 2}]
# 3.join
#Customers buy records for join Example
buyTable = [
    {'name': 'Xiaomi', 'product': 'battery', 'amount':7},
    {'name': 'Hong', 'product': 'keyboard', 'amount':1},
    {'name': 'Lyn', 'product': 'cleaner', 'amount':5},
    {'name': 'Hong', 'product': 'monitor', 'amount':1},
    {'name': 'Hong', 'product': 'mouse', 'amount':3},
    {'name': 'Lyn', 'product': 'mouse', 'amount':1},
    {'name': 'Unknown', 'product': 'keyboard', 'amount':1},
    {'name': 'Lee', 'product': 'hardcase', 'amount':2},
    {'name': 'Lee', 'product': 'keycover', 'amount':2},
    {'name': 'Yuki', 'product': 'manual', 'amount':1},
    {'name': 'Xiaomi', 'product': 'cable', 'amount':1},
    {'name': 'anonymous', 'product': 'adopter', 'amount':2},
    {'name': 'Park', 'product': 'battery', 'amount':2},
    {'name': 'Hong', 'product': 'cleaner', 'amount':3},
    {'name': 'Smith', 'product': 'mouse', 'amount':1},
]
lst_customer = ls.Listorm(userTable)
lst_buyitems = ls.Listorm(buyTable)
# 3-1 inner join
# Add Extra customer's Info (location) to each buytime
lst_buyitems.join(lst_customer.select('location', 'name'), on='name')
[{'amount': 1, 'location': 'Japan', 'name': 'Yuki', 'product': 'manual'},
 {'amount': 1, 'location': 'USA', 'name': 'Smith', 'product': 'mouse'},
 {'amount': 2, 'location': 'Korea', 'name': 'Lee', 'product': 'hardcase'},
 {'amount': 2, 'location': 'Korea', 'name': 'Lee', 'product': 'keycover'},
 {'amount': 7, 'location': 'China', 'name': 'Xiaomi', 'product': 'battery'},
 {'amount': 1, 'location': 'China', 'name': 'Xiaomi', 'product': 'cable'},
 {'amount': 1, 'location': 'Korea', 'name': 'Hong', 'product': 'keyboard'},
 {'amount': 1, 'location': 'Korea', 'name': 'Hong', 'product': 'monitor'},
 {'amount': 3, 'location': 'Korea', 'name': 'Hong', 'product': 'mouse'},
 {'amount': 3, 'location': 'Korea', 'name': 'Hong', 'product': 'cleaner'},
 {'amount': 2, 'location': 'Korea', 'name': 'Park', 'product': 'battery'},
 {'amount': 5, 'location': 'China', 'name': 'Lyn', 'product': 'cleaner'},
 {'amount': 1, 'location': 'China', 'name': 'Lyn', 'product': 'mouse'}]
# 3-2 left join
# if names in buy table are not in customer table, then set to none the customer's info(location is set to none)
lst_buyitems.join(lst_customer.select('location', 'name'), on='name', how='left')
# Unknown and anonymouse location would be set to None
[{'amount': 1, 'location': 'Korea', 'name': 'Hong', 'product': 'keyboard'},
 {'amount': 1, 'location': 'Korea', 'name': 'Hong', 'product': 'monitor'},
 {'amount': 3, 'location': 'Korea', 'name': 'Hong', 'product': 'mouse'},
 {'amount': 3, 'location': 'Korea', 'name': 'Hong', 'product': 'cleaner'},
 {'amount': 2, 'location': 'Korea', 'name': 'Lee', 'product': 'hardcase'},
 {'amount': 2, 'location': 'Korea', 'name': 'Lee', 'product': 'keycover'},
 {'amount': 5, 'location': 'China', 'name': 'Lyn', 'product': 'cleaner'},
 {'amount': 1, 'location': 'China', 'name': 'Lyn', 'product': 'mouse'},
 {'amount': 2, 'location': 'Korea', 'name': 'Park', 'product': 'battery'},
 {'amount': 1, 'location': 'USA', 'name': 'Smith', 'product': 'mouse'},
 {'amount': 1, 'location': None, 'name': 'Unknown', 'product': 'keyboard'},
 {'amount': 7, 'location': 'China', 'name': 'Xiaomi', 'product': 'battery'},
 {'amount': 1, 'location': 'China', 'name': 'Xiaomi', 'product': 'cable'},
 {'amount': 1, 'location': 'Japan', 'name': 'Yuki', 'product': 'manual'},
 {'amount': 2, 'location': None, 'name': 'anonymous', 'product': 'adopter'}]
# 3-3 outer join
lst_buyitems.join(lst_customer.select('location', 'name'), on='name', how='outer')
[{'amount': None, 'location': 'USA', 'name': 'Charse', 'product': None},
 {'amount': 1, 'location': 'Japan', 'name': 'Yuki', 'product': 'manual'},
 {'amount': 1, 'location': 'USA', 'name': 'Smith', 'product': 'mouse'},
 {'amount': 2, 'location': 'Korea', 'name': 'Lee', 'product': 'hardcase'},
 {'amount': 2, 'location': 'Korea', 'name': 'Lee', 'product': 'keycover'},
 {'amount': 7, 'location': 'China', 'name': 'Xiaomi', 'product': 'battery'},
 {'amount': 1, 'location': 'China', 'name': 'Xiaomi', 'product': 'cable'},
 {'amount': 1, 'location': None, 'name': 'Unknown', 'product': 'keyboard'},
 {'amount': 1, 'location': 'Korea', 'name': 'Hong', 'product': 'keyboard'},
 {'amount': 1, 'location': 'Korea', 'name': 'Hong', 'product': 'monitor'},
 {'amount': 3, 'location': 'Korea', 'name': 'Hong', 'product': 'mouse'},
 {'amount': 3, 'location': 'Korea', 'name': 'Hong', 'product': 'cleaner'},
 {'amount': 2, 'location': None, 'name': 'anonymous', 'product': 'adopter'},
 {'amount': 2, 'location': 'Korea', 'name': 'Park', 'product': 'battery'},
 {'amount': 5, 'location': 'China', 'name': 'Lyn', 'product': 'cleaner'},
 {'amount': 1, 'location': 'China', 'name': 'Lyn', 'product': 'mouse'}]

4-1.Utilities - Find Different in two different table - The Changed thing in table

# changing to add two record, delete two record and modified a recored where name ==Lyn set age 28 
before = [
    {'name': 'Hong', 'gender': 'M', 'age': 18, 'location': 'Korea'},
    {'name': 'Charse', 'gender': 'M', 'age': 19, 'location': 'USA'},
    {'name': 'Lyn', 'gender': 'F', 'age': 29, 'location': 'China'},
]
after = [
    {'name': 'Lyn', 'gender': 'F', 'age': 28, 'location': 'China'},
    {'name': 'Xiaomi', 'gender': 'M', 'age': 15, 'location': 'China'},
    {'name': 'Park', 'gender': 'M', 'age': 29, 'location': 'Korea'},
]
changes = ls.Listorm(before).get_changes(after, pk='name')
#pk: primary key is needed
changes
Changes(added=[Added(pk='Xiaomi', rows={'location': 'China', 'gender': 'M', 'name': 'Xiaomi', 'age': 15}), Added(pk='Park', rows={'location': 'Korea', 'gender': 'M', 'name': 'Park', 'age': 29})], deleted=[Deleted(pk='Hong', rows={'location': 'Korea', 'gender': 'M', 'name': 'Hong', 'age': 18}), Deleted(pk='Charse', rows={'location': 'USA', 'gender': 'M', 'name': 'Charse', 'age': 19})], updated=[Updated(pk='Lyn', before={'location': 'China', 'gender': 'F', 'name': 'Lyn', 'age': 29}, after={'location': 'China', 'gender': 'F', 'name': 'Lyn', 'age': 28}, where=['age'])])
changes.added
[Added(pk='Xiaomi', rows={'location': 'China', 'gender': 'M', 'name': 'Xiaomi', 'age': 15}),
 Added(pk='Park', rows={'location': 'Korea', 'gender': 'M', 'name': 'Park', 'age': 29})]
changes.deleted
[Deleted(pk='Hong', rows={'location': 'Korea', 'gender': 'M', 'name': 'Hong', 'age': 18}),
 Deleted(pk='Charse', rows={'location': 'USA', 'gender': 'M', 'name': 'Charse', 'age': 19})]
changes.updated
[Updated(pk='Lyn', before={'location': 'China', 'gender': 'F', 'name': 'Lyn', 'age': 29}, after={'location': 'China', 'gender': 'F', 'name': 'Lyn', 'age': 28}, where=['age'])]

4-2. Utilities - Read And Write to Excel, CSV

lst = ls.read_excel(file_name=None, file_contents=None, sheet_index=0, start_row=0, index=None)

Excel File or byte Content of Excel to Listorm object

lst = ls.read_csv(filename=None, encoding='utf-8', fp=None, index=None)

CSV file or filepointer of CSV to Listorm object

# saving date to excel or CSV
lst_customer = ls.Listorm(userTable)
excel_file_content = lst_customer.to_excel(filename=None) # If filnames is None, returns bytes of filecontents
csv_file_content = lst_customer.to_csv(filename=None) # If filnames is None, returns bytes of filecontents

listorm

listorm

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

listorm-1.3.0.tar.gz (31.7 kB view details)

Uploaded Source

File details

Details for the file listorm-1.3.0.tar.gz.

File metadata

  • Download URL: listorm-1.3.0.tar.gz
  • Upload date:
  • Size: 31.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.11

File hashes

Hashes for listorm-1.3.0.tar.gz
Algorithm Hash digest
SHA256 949c990b2ad606614cd2319aaaa0e618d32344270c4141f31738165f33c2eb18
MD5 c22beb88423881afa8b65f2900b1e908
BLAKE2b-256 569c20540dbd4ee12e3fd7eb04f6045d4cd653b31a7dbdbb37347e6f9980288a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page