Skip to main content

Image Classifier optimised for ecology use-cases

Project description

Lit Ecology Classifier

Documentation: https://lit-ecology-classifier.readthedocs.io/en/latest/ Lit Ecology Classifier is a machine learning project designed for image classification tasks. It leverages PyTorch Lightning for streamlined training and evaluation processes.

Features

  • Easy configuration and setup
  • Utilizes PyTorch Lightning for robust training and evaluation
  • Supports training on multiple GPUs
  • Test Time Augmentation (TTA) for enhanced evaluation
  • Integration with Weights and Biases for experiment tracking

Installation

To install Lit Ecology Classifier, use pip:

pip install lit-ecology-classifier

Usage

Training

To train the model, use the following command:

python -m lit_ecology_classifier.main --max_epochs 20 --dataset phyto --priority config/priority.json

Inference

To run inference on unlabelled data, use the following command:

python -m lit_ecology_classifier.predict --datapath /path/to/data.tar --model_path /path/to/model.ckpt --outpath ./predictions/

Configuration

The project uses an argument parser for configuration. Here are some of the key arguments:

Training Arguments

  • --datapath: Path to the tar file containing the training data.
  • --train_outpath: Output path for training artifacts.
  • --main_param_path: Main directory where the training parameters are saved.
  • --dataset: Name of the dataset.
  • --use_wandb: Use Weights and Biases for logging.
  • --priority_classes: Path to the JSON file with priority classes.
  • --balance_classes: Balance the classes for training.
  • --batch_size: Batch size for training.
  • --max_epochs: Number of epochs to train.
  • --lr: Learning rate for training.
  • --lr_factor: Learning rate factor for training of full body.
  • --no_gpu: Use no GPU for training.

Inference Arguments

  • --outpath: Directory where predictions are saved.
  • --model_path: Path to the model file.
  • --datapath: Path to the tar file containing the data to classify.
  • --no_gpu: Use no GPU for inference.
  • --no_TTA: Disable test-time augmentation.

Documentation

Detailed documentation for this project is available at Read the Docs.

Example SLURM Job Submission Script

Here is an example SLURM job submission script for training on multiple GPUs:

#!/bin/bash
#SBATCH --account="em09"
#SBATCH --constraint='gpu'
#SBATCH --nodes=2
#SBATCH --ntasks-per-core=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=12
#SBATCH --partition=normal
#SBATCH --constraint=gpu
#SBATCH --hint=nomultithread
#SBATCH --output=slurm/slurm_%j.out
#SBATCH --error=slurm/slurm_%j.err
export OMP_NUM_THREADS=12 #$SLURM_CPUS_PER_TASK
cd ${SCRATCH}/lit_ecology_classifier
module purge
module load daint-gpu cray-python
source lit_ecology/bin/activate
python -m lit_ecology_classifier.main --max_epochs 2 --dataset phyto --priority config/priority.json

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lit_ecology_classifier-0.2.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

lit_ecology_classifier-0.2-py3-none-any.whl (20.2 kB view details)

Uploaded Python 3

File details

Details for the file lit_ecology_classifier-0.2.tar.gz.

File metadata

  • Download URL: lit_ecology_classifier-0.2.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.4

File hashes

Hashes for lit_ecology_classifier-0.2.tar.gz
Algorithm Hash digest
SHA256 11cea23e139043d0c3f5503bc6f6cfc4dd3bfb0ffdec35f12d29515c5e2b32fe
MD5 633730fc73c520ea0884fc5c503648e8
BLAKE2b-256 52bdf7608c9127726defd5b517b057330bdccbd793cf2805f9e4558dcf335cbf

See more details on using hashes here.

File details

Details for the file lit_ecology_classifier-0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for lit_ecology_classifier-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6270b52a3c920d0c60f943e129669570828e819c07e44b4b2683817d03fb291a
MD5 ca997232335d3bc73b43c24fbb9d3b30
BLAKE2b-256 1617962dc943c15f4a2c9664c9e922615355a0bc94e876e21e8a62fb54ab4ddb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page