Skip to main content

Image Classifier optimised for ecology use-cases

Project description

Lit Ecology Classifier

Documentation: https://lit-ecology-classifier.readthedocs.io/en/latest/ Lit Ecology Classifier is a machine learning project designed for image classification tasks. It leverages PyTorch Lightning for streamlined training and evaluation processes.

Features

  • Easy configuration and setup
  • Utilizes PyTorch Lightning for robust training and evaluation
  • Supports training on multiple GPUs
  • Test Time Augmentation (TTA) for enhanced evaluation
  • Integration with Weights and Biases for experiment tracking

Installation

To install Lit Ecology Classifier, use pip:

pip install lit-ecology-classifier

Usage

Training

To train the model, use the following command:

python -m lit_ecology_classifier.main --max_epochs 20 --dataset phyto --priority config/priority.json

Inference

To run inference on unlabelled data, use the following command:

python -m lit_ecology_classifier.predict --datapath /path/to/data.tar --model_path /path/to/model.ckpt --outpath ./predictions/

Configuration

The project uses an argument parser for configuration. Here are some of the key arguments:

Training Arguments

  • --datapath: Path to the tar file containing the training data.
  • --train_outpath: Output path for training artifacts.
  • --main_param_path: Main directory where the training parameters are saved.
  • --dataset: Name of the dataset.
  • --use_wandb: Use Weights and Biases for logging.
  • --priority_classes: Path to the JSON file with priority classes.
  • --balance_classes: Balance the classes for training.
  • --batch_size: Batch size for training.
  • --max_epochs: Number of epochs to train.
  • --lr: Learning rate for training.
  • --lr_factor: Learning rate factor for training of full body.
  • --no_gpu: Use no GPU for training.

Inference Arguments

  • --outpath: Directory where predictions are saved.
  • --model_path: Path to the model file.
  • --datapath: Path to the tar file containing the data to classify.
  • --no_gpu: Use no GPU for inference.
  • --no_TTA: Disable test-time augmentation.

Documentation

Detailed documentation for this project is available at Read the Docs.

Example SLURM Job Submission Script

Here is an example SLURM job submission script for training on multiple GPUs:

#!/bin/bash
#SBATCH --account="em09"
#SBATCH --constraint='gpu'
#SBATCH --nodes=2
#SBATCH --ntasks-per-core=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=12
#SBATCH --partition=normal
#SBATCH --constraint=gpu
#SBATCH --hint=nomultithread
#SBATCH --output=slurm/slurm_%j.out
#SBATCH --error=slurm/slurm_%j.err
export OMP_NUM_THREADS=12 #$SLURM_CPUS_PER_TASK
cd ${SCRATCH}/lit_ecology_classifier
module purge
module load daint-gpu cray-python
source lit_ecology/bin/activate
python -m lit_ecology_classifier.main --max_epochs 2 --dataset phyto --priority config/priority.json

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

lit_ecology_classifier-1.1.1-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file lit_ecology_classifier-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for lit_ecology_classifier-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8411973fd6b6f1abf02b81cf11edb0332b92164e4e024c85a89710e573bca5b2
MD5 57845e17a81a127df973592865efb260
BLAKE2b-256 cb54060cd75d554eab9640414f4e22cff947b3ade089988efc7850f6f08fd8f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page