litds
Project description
litds
Developer Guide
Setup
# create conda environment
$ mamba env create -f env.yml
# update conda environment
$ mamba env update -n litds --file env.yml
Install
pip install -e .
# install from pypi
pip install litds
nbdev
# activate conda environment
$ conda activate litds
# make sure the litds package is installed in development mode
$ pip install -e .
# make changes under nbs/ directory
# ...
# compile to have changes apply to the litds package
$ nbdev_prepare
Publishing
# publish to pypi
$ nbdev_pypi
# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
Usage
Installation
Install latest from the GitHub repository:
$ pip install git+https://github.com/dsm-72/litds.git
or from conda
$ conda install -c dsm-72 litds
or from pypi
$ pip install litds
Documentation
Documentation can be found hosted on GitHub repository pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.
Brief Datasets Demo
dd = DiamondsDataset()
dd.getone()
(tensor([[ 0.0491, 0.0015],
[ 0.1555, 0.3419],
[-0.3727, 0.3598],
[ 0.6811, 0.3734],
[ 0.4492, -0.7379]]),
tensor([0., 1., 2., 3., 4.]))
dd.plot(palette='mako_r')
od = OrbitsDataset()
od.getone()
(tensor([[ 0.0203, -0.2043],
[-0.3889, -0.1781],
[ 0.0290, 0.6299],
[-0.3386, 0.8402],
[ 0.9571, 0.0337]]),
tensor([0., 1., 2., 3., 4.]))
od.plot(palette='mako_r')
eb = EmbryoidBodies2018DataModule(
primary='pca',
batch_size=8,
)
eb.setup()
EB Loader: 0%| | 0/126 [00:00<?, ?it/s]
Loading data
Data ready!
dl = eb.train_dataloader()
eb.train_ds.df[eb.train_ds.df.columns[-5:]].head()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
d97 | d98 | d99 | d100 | samples | |
---|---|---|---|---|---|
4854 | -0.633847 | -0.701649 | -1.466198 | -0.381950 | Day 06-09 |
6121 | 0.432789 | 1.089373 | -0.968371 | -0.211686 | Day 06-09 |
7620 | 0.042552 | 0.870117 | -1.264836 | -1.664296 | Day 12-15 |
12560 | 1.770667 | -0.594136 | 1.893129 | -1.064998 | Day 18-21 |
10336 | -2.947320 | -1.072601 | 1.554807 | 0.170369 | Day 18-21 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
litds-0.0.3.tar.gz
(35.5 kB
view details)
Built Distribution
litds-0.0.3-py3-none-any.whl
(47.5 kB
view details)
File details
Details for the file litds-0.0.3.tar.gz
.
File metadata
- Download URL: litds-0.0.3.tar.gz
- Upload date:
- Size: 35.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6d42bddb1ce0c3cd3596ad4f7235af46d749156882979679956c261bdb9ccc0 |
|
MD5 | a7bc5a6315c50a23451e91e69eeef45c |
|
BLAKE2b-256 | d3637d9becaebc78795d20a612d8ae72e83fb3752d0eec8c07bea0fe47b9f88f |
File details
Details for the file litds-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: litds-0.0.3-py3-none-any.whl
- Upload date:
- Size: 47.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c82293ce8823529ef649e0faff8d14cf4f95db8dbd3f6ab251273473142ee7d9 |
|
MD5 | df2a7829b3fe90a219889c1c240edd60 |
|
BLAKE2b-256 | b5341b4fb8ba48cd22c4178f31b83b677371254951809c0ce30a0c1253af64cd |