Skip to main content

litds

Project description

litds

Developer Guide

Setup

# create conda environment
$ mamba env create -f env.yml

# update conda environment
$ mamba env update -n litds --file env.yml

Install

pip install -e .

# install from pypi
pip install litds

nbdev

# activate conda environment
$ conda activate litds

# make sure the litds package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to the litds package
$ nbdev_prepare

Publishing

# publish to pypi
$ nbdev_pypi

# publish to conda
$ nbdev_conda --build_args '-c conda-forge'

Usage

Installation

Install latest from the GitHub repository:

$ pip install git+https://github.com/dsm-72/litds.git

or from conda

$ conda install -c dsm-72 litds

or from pypi

$ pip install litds

Documentation

Documentation can be found hosted on GitHub repository pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.

Brief Datasets Demo

dd = DiamondsDataset()
dd.getone()
(tensor([[ 0.0491,  0.0015],
         [ 0.1555,  0.3419],
         [-0.3727,  0.3598],
         [ 0.6811,  0.3734],
         [ 0.4492, -0.7379]]),
 tensor([0., 1., 2., 3., 4.]))
dd.plot(palette='mako_r')

od = OrbitsDataset()
od.getone()
(tensor([[ 0.0203, -0.2043],
         [-0.3889, -0.1781],
         [ 0.0290,  0.6299],
         [-0.3386,  0.8402],
         [ 0.9571,  0.0337]]),
 tensor([0., 1., 2., 3., 4.]))
od.plot(palette='mako_r')

eb = EmbryoidBodies2018DataModule(
    primary='pca',
    batch_size=8,
)
eb.setup()
EB Loader:   0%|          | 0/126 [00:00<?, ?it/s]

Loading data
Data ready!
dl = eb.train_dataloader()
eb.train_ds.df[eb.train_ds.df.columns[-5:]].head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style>
d97 d98 d99 d100 samples
4854 -0.633847 -0.701649 -1.466198 -0.381950 Day 06-09
6121 0.432789 1.089373 -0.968371 -0.211686 Day 06-09
7620 0.042552 0.870117 -1.264836 -1.664296 Day 12-15
12560 1.770667 -0.594136 1.893129 -1.064998 Day 18-21
10336 -2.947320 -1.072601 1.554807 0.170369 Day 18-21

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

litds-0.0.3.tar.gz (35.5 kB view details)

Uploaded Source

Built Distribution

litds-0.0.3-py3-none-any.whl (47.5 kB view details)

Uploaded Python 3

File details

Details for the file litds-0.0.3.tar.gz.

File metadata

  • Download URL: litds-0.0.3.tar.gz
  • Upload date:
  • Size: 35.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for litds-0.0.3.tar.gz
Algorithm Hash digest
SHA256 d6d42bddb1ce0c3cd3596ad4f7235af46d749156882979679956c261bdb9ccc0
MD5 a7bc5a6315c50a23451e91e69eeef45c
BLAKE2b-256 d3637d9becaebc78795d20a612d8ae72e83fb3752d0eec8c07bea0fe47b9f88f

See more details on using hashes here.

File details

Details for the file litds-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: litds-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 47.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for litds-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c82293ce8823529ef649e0faff8d14cf4f95db8dbd3f6ab251273473142ee7d9
MD5 df2a7829b3fe90a219889c1c240edd60
BLAKE2b-256 b5341b4fb8ba48cd22c4178f31b83b677371254951809c0ce30a0c1253af64cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page