Skip to main content

Simple dictionary built on top of SQLite

Project description

litedict

Dictionary implemented on top of SQLite

Why?

You can use this to implement a persistent dictionary. It also uses some SQLite syntax to enable getting keys using pattern matching (see examples).

Installation

pip install litedict

Alternatives

  • RaRe-Technologies/sqlitedict: This library uses a separate writing thread. Modern versions of SQLite are thread safe by default (serialized), so a separate writing thread is not strictly needed. It can be helpful to avoid DB locks, but it also adds extra complexity. That implementation is also missing some performance optimizations that are present in this repository.

Examples

The examples are taken from the tests in tests.ipynb

from litedict import SQLDict

TEST_1 = "key_test_1"
TEST_2 = "key_test_2"

Basic functionality

d = SQLDict(":memory:")

d[TEST_1] = "asdfoobar"

assert d[TEST_1] == "asdfoobar"

del d[TEST_1]

assert d.get(TEST_1, None) is None

# execute multiple instructions inside a transaction
with d.transaction():
    d["asd"] = "efg"
    d["foo"] = "bar"

Glob matching

d[TEST_1] = "asdfoobar"

d[TEST_2] = "foobarasd"

d["key_testx_3"] = "barasdfoo"

assert d.glob("key_test*") == ["asdfoobar", "foobarasd", "barasdfoo"]

assert d.glob("key_test_?") == ["asdfoobar", "foobarasd"]

assert d.glob("key_tes[tx]*") == ["asdfoobar", "foobarasd", "barasdfoo"]

Numbers

d[TEST_1] = 1

d[TEST_2] = 2

assert d[TEST_1] + d[TEST_2] == 3

Benchmarks

from string import ascii_lowercase, printable
from random import choice
import random


def random_string(string_length=10, fuzz=False, space=False):
    """Generate a random string of fixed length """
    letters = ascii_lowercase
    letters = letters + " " if space else letters
    if fuzz:
        letters = printable
    return "".join(choice(letters) for i in range(string_length))
import gc

import pickle

import json

Pickle

d = SQLDict(
    ":memory:",
    encoder=lambda x: pickle.dumps(x).hex(),
    decoder=lambda x: pickle.loads(bytes.fromhex(x)),
)

gc.collect()

# %%timeit -n20000 -r10

d[random_string(8)] = random_string(50)

d.get(random_string(8), None)

# 69.2 µs ± 4.84 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

Noop

d = SQLDict(
    ":memory:",
    encoder=lambda x: x,
    decoder=lambda x: x,
)

gc.collect()

# %%timeit -n20000 -r10

d[random_string(8)] = random_string(50)

d.get(random_string(8), None)

# 66.8 µs ± 2.41 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

JSON

d = SQLDict(
    ":memory:",
    encoder=lambda x: json.dumps(x),
    decoder=lambda x: json.loads(x),
)

gc.collect()

# %%timeit -n20000 -r10

d[random_string(8)] = random_string(50)

d.get(random_string(8), None)

# 68.6 µs ± 3.07 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

Pickle Python obj

d = SQLDict(
    ":memory:",
    encoder=lambda x: pickle.dumps(x).hex(),
    decoder=lambda x: pickle.loads(bytes.fromhex(x)),
)

gc.collect()

class C:
    def __init__(self, x):
        self.x = x

    def pp(self):
        return x

    def f(self):
        def _f(y):
            return y * self.x ** 2

        return _f

# %%timeit -n20000 -r10

d[random_string(8)] = C(random.randint(1, 200))

d.get(random_string(8), None)

# 41.1 µs ± 2.75 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

Dictionary

d = {}

gc.collect()

# %%timeit -n20000 -r10

d[random_string(8)] = random_string(50)

d.get(random_string(8), None)

# 53.1 µs ± 4.42 µs per loop (mean ± std. dev. of 10 runs, 20000 loops each)

Changelog

  • 0.3
    • Add transactions as part of the dictionary

Meta

Ricardo Ander-Egg Aguilar – @ricardoanderegg

Distributed under the MIT license. See LICENSE for more information.

Contributing

The only hard rules for the project are:

  • No extra dependencies allowed
  • No extra files, everything must be inside the main module's .py file.
  • Tests must be inside the tests.ipynb notebook.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

litedict-0.5.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

litedict-0.5-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file litedict-0.5.tar.gz.

File metadata

  • Download URL: litedict-0.5.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for litedict-0.5.tar.gz
Algorithm Hash digest
SHA256 c9e4e6deba08f4a1b4c5784c27ea151fc5cdefcf8e3271c89ffabf49200f332c
MD5 86efea5ad9a119009c9b64f418773e33
BLAKE2b-256 5885644341eedad5f2fcbfd5c3ad11f31c759a6aafcfd5b575b70d783349fe1e

See more details on using hashes here.

File details

Details for the file litedict-0.5-py3-none-any.whl.

File metadata

  • Download URL: litedict-0.5-py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for litedict-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 dbb8dd65ce97601f4d0994844ea1073aebbc015f7549889fb98eaa720e5196bb
MD5 e0c61ca0c0bcf9f904739879b8bc889f
BLAKE2b-256 1e409da724d7ff9ecfb3af3e3f5f59643350c07d8885e0ec82ab0566e191c7b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page