Skip to main content

Library to easily interface with LLM API providers

Project description

๐Ÿš… LiteLLM

Deploy to Render Deploy on Railway

Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, Groq etc.]

LiteLLM Proxy Server (LLM Gateway) | Hosted Proxy (Preview) | Enterprise Tier

PyPI Version Y Combinator W23 Whatsapp Discord

LiteLLM manages:

  • Translate inputs to provider's completion, embedding, and image_generation endpoints
  • Consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
  • Set Budgets & Rate limits per project, api key, model LiteLLM Proxy Server (LLM Gateway)

Jump to LiteLLM Proxy (LLM Gateway) Docs
Jump to Supported LLM Providers

๐Ÿšจ Stable Release: Use docker images with the -stable tag. These have undergone 12 hour load tests, before being published. More information about the release cycle here

Support for more providers. Missing a provider or LLM Platform, raise a feature request.

Usage (Docs)

[!IMPORTANT] LiteLLM v1.0.0 now requires openai>=1.0.0. Migration guide here
LiteLLM v1.40.14+ now requires pydantic>=2.0.0. No changes required.

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-key"

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="openai/gpt-4o", messages=messages)

# anthropic call
response = completion(model="anthropic/claude-3-sonnet-20240229", messages=messages)
print(response)

Response (OpenAI Format)

{
    "id": "chatcmpl-565d891b-a42e-4c39-8d14-82a1f5208885",
    "created": 1734366691,
    "model": "claude-3-sonnet-20240229",
    "object": "chat.completion",
    "system_fingerprint": null,
    "choices": [
        {
            "finish_reason": "stop",
            "index": 0,
            "message": {
                "content": "Hello! As an AI language model, I don't have feelings, but I'm operating properly and ready to assist you with any questions or tasks you may have. How can I help you today?",
                "role": "assistant",
                "tool_calls": null,
                "function_call": null
            }
        }
    ],
    "usage": {
        "completion_tokens": 43,
        "prompt_tokens": 13,
        "total_tokens": 56,
        "completion_tokens_details": null,
        "prompt_tokens_details": {
            "audio_tokens": null,
            "cached_tokens": 0
        },
        "cache_creation_input_tokens": 0,
        "cache_read_input_tokens": 0
    }
}

Call any model supported by a provider, with model=<provider_name>/<model_name>. There might be provider-specific details here, so refer to provider docs for more information

Async (Docs)

from litellm import acompletion
import asyncio

async def test_get_response():
    user_message = "Hello, how are you?"
    messages = [{"content": user_message, "role": "user"}]
    response = await acompletion(model="openai/gpt-4o", messages=messages)
    return response

response = asyncio.run(test_get_response())
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

from litellm import completion
response = completion(model="openai/gpt-4o", messages=messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

# claude 2
response = completion('anthropic/claude-3-sonnet-20240229', messages, stream=True)
for part in response:
    print(part)

Response chunk (OpenAI Format)

{
    "id": "chatcmpl-2be06597-eb60-4c70-9ec5-8cd2ab1b4697",
    "created": 1734366925,
    "model": "claude-3-sonnet-20240229",
    "object": "chat.completion.chunk",
    "system_fingerprint": null,
    "choices": [
        {
            "finish_reason": null,
            "index": 0,
            "delta": {
                "content": "Hello",
                "role": "assistant",
                "function_call": null,
                "tool_calls": null,
                "audio": null
            },
            "logprobs": null
        }
    ]
}

Logging Observability (Docs)

LiteLLM exposes pre defined callbacks to send data to Lunary, MLflow, Langfuse, DynamoDB, s3 Buckets, Helicone, Promptlayer, Traceloop, Athina, Slack

from litellm import completion

## set env variables for logging tools (when using MLflow, no API key set up is required)
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
os.environ["HELICONE_API_KEY"] = "your-helicone-auth-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["ATHINA_API_KEY"] = "your-athina-api-key"

os.environ["OPENAI_API_KEY"] = "your-openai-key"

# set callbacks
litellm.success_callback = ["lunary", "mlflow", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc

#openai call
response = completion(model="openai/gpt-4o", messages=[{"role": "user", "content": "Hi ๐Ÿ‘‹ - i'm openai"}])

LiteLLM Proxy Server (LLM Gateway) - (Docs)

Track spend + Load Balance across multiple projects

Hosted Proxy (Preview)

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

๐Ÿ“– Proxy Endpoints - Swagger Docs

Quick Start Proxy - CLI

pip install 'litellm[proxy]'

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:4000

Step 2: Make ChatCompletions Request to Proxy

[!IMPORTANT] ๐Ÿ’ก Use LiteLLM Proxy with Langchain (Python, JS), OpenAI SDK (Python, JS) Anthropic SDK, Mistral SDK, LlamaIndex, Instructor, Curl

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Proxy Key Management (Docs)

Connect the proxy with a Postgres DB to create proxy keys

# Get the code
git clone https://github.com/BerriAI/litellm

# Go to folder
cd litellm

# Add the master key - you can change this after setup
echo 'LITELLM_MASTER_KEY="sk-1234"' > .env

# Add the litellm salt key - you cannot change this after adding a model
# It is used to encrypt / decrypt your LLM API Key credentials
# We recommend - https://1password.com/password-generator/ 
# password generator to get a random hash for litellm salt key
echo 'LITELLM_SALT_KEY="sk-1234"' > .env

source .env

# Start
docker-compose up

UI on /ui on your proxy server ui_3

Set budgets and rate limits across multiple projects POST /key/generate

Request

curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai", "team": "core-infra"}}'

Expected Response

{
    "key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
    "expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}

Supported Providers (Docs)

Provider Completion Streaming Async Completion Async Streaming Async Embedding Async Image Generation
openai โœ… โœ… โœ… โœ… โœ… โœ…
azure โœ… โœ… โœ… โœ… โœ… โœ…
AI/ML API โœ… โœ… โœ… โœ… โœ… โœ…
aws - sagemaker โœ… โœ… โœ… โœ… โœ…
aws - bedrock โœ… โœ… โœ… โœ… โœ…
google - vertex_ai โœ… โœ… โœ… โœ… โœ… โœ…
google - palm โœ… โœ… โœ… โœ…
google AI Studio - gemini โœ… โœ… โœ… โœ…
mistral ai api โœ… โœ… โœ… โœ… โœ…
cloudflare AI Workers โœ… โœ… โœ… โœ…
cohere โœ… โœ… โœ… โœ… โœ…
anthropic โœ… โœ… โœ… โœ…
empower โœ… โœ… โœ… โœ…
huggingface โœ… โœ… โœ… โœ… โœ…
replicate โœ… โœ… โœ… โœ…
together_ai โœ… โœ… โœ… โœ…
openrouter โœ… โœ… โœ… โœ…
ai21 โœ… โœ… โœ… โœ…
baseten โœ… โœ… โœ… โœ…
vllm โœ… โœ… โœ… โœ…
nlp_cloud โœ… โœ… โœ… โœ…
aleph alpha โœ… โœ… โœ… โœ…
petals โœ… โœ… โœ… โœ…
ollama โœ… โœ… โœ… โœ… โœ…
deepinfra โœ… โœ… โœ… โœ…
perplexity-ai โœ… โœ… โœ… โœ…
Groq AI โœ… โœ… โœ… โœ…
Deepseek โœ… โœ… โœ… โœ…
anyscale โœ… โœ… โœ… โœ…
IBM - watsonx.ai โœ… โœ… โœ… โœ… โœ…
voyage ai โœ…
xinference [Xorbits Inference] โœ…
FriendliAI โœ… โœ… โœ… โœ…
Galadriel โœ… โœ… โœ… โœ…

Read the Docs

Contributing

Interested in contributing? Contributions to LiteLLM Python SDK, Proxy Server, and contributing LLM integrations are both accepted and highly encouraged! See our Contribution Guide for more details

Enterprise

For companies that need better security, user management and professional support

Talk to founders

This covers:

  • โœ… Features under the LiteLLM Commercial License:
  • โœ… Feature Prioritization
  • โœ… Custom Integrations
  • โœ… Professional Support - Dedicated discord + slack
  • โœ… Custom SLAs
  • โœ… Secure access with Single Sign-On

Code Quality / Linting

LiteLLM follows the Google Python Style Guide.

We run:

If you have suggestions on how to improve the code quality feel free to open an issue or a PR.

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors

Run in Developer mode

Services

  1. Setup .env file in root
  2. Run dependant services docker-compose up db prometheus

Backend

  1. (In root) create virtual environment python -m venv .venv
  2. Activate virtual environment source .venv/bin/activate
  3. Install dependencies pip install -e ".[all]"
  4. Start proxy backend uvicorn litellm.proxy.proxy_server:app --host localhost --port 4000 --reload

Frontend

  1. Navigate to ui/litellm-dashboard
  2. Install dependencies npm install
  3. Run npm run dev to start the dashboard

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

litellm-1.66.3.tar.gz (7.2 MB view details)

Uploaded Source

Built Distribution

litellm-1.66.3-py3-none-any.whl (7.6 MB view details)

Uploaded Python 3

File details

Details for the file litellm-1.66.3.tar.gz.

File metadata

  • Download URL: litellm-1.66.3.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.8.20

File hashes

Hashes for litellm-1.66.3.tar.gz
Algorithm Hash digest
SHA256 909564f5dc33d7dac236de6cc8066512834467bcebe3494a664d72ae6506a5ca
MD5 457dd588ec80b3c0340b97330268c813
BLAKE2b-256 0a10e5f4824ce69d83c2208397a6522df50e0132ca626779101580121b9d342b

See more details on using hashes here.

File details

Details for the file litellm-1.66.3-py3-none-any.whl.

File metadata

  • Download URL: litellm-1.66.3-py3-none-any.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.8.20

File hashes

Hashes for litellm-1.66.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f1c662afec14225cee3bae7c93961857edf13fcece42fe46d921d9df50f70dd2
MD5 6ed82b818f5454bc827c8197387ed015
BLAKE2b-256 20a15e44417a06f3fecdfb164d0774992301293ad73a67763e49c6b97ed61db2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page