Skip to main content

A handy way to interact with an SQLite database from Python

Project description

Litequery

Litequery is a minimalist library for interacting with SQLite in Python. It lets you define your queries once and call them as methods. No ORM bloat, just raw SQL power, with the flexibility to operate in both asynchronous and synchronous modes.

Why Litequery?

  • Simplicity: Define SQL queries in .sql files. No complex ORM layers.
  • Async first: Built for modern async Python, but also supports synchronous operations for traditional use cases.
  • Flexible: Supports different SQL operations seamlessly.

Installation

pip install litequery

Getting Started

Define Your Queries

Create a queries.sql file. Name your queries using comments and write them in pure SQL.

-- name: get_all_users
SELECT * FROM users;

-- name: get_user_by_id^
SELECT * FROM users WHERE id = :id;

-- name: get_last_user_id$
SELECT MAX(id) FROM users;

-- name: insert_user<!
INSERT INTO users (name, email) VALUES (:name, :email);

-- name: delete_all_users!
DELETE FROM users;

Using Your Queries

Define your database and queries, and then call them as methods. Choose async or sync setup based on your needs. It's as straightforward as it sounds.

import litequery
import asyncio


async def main():
    lq = litequery.setup("database.db", "queries.sql", use_async=True)
    await lq.connect()

    user_id = await lq.insert_user(name="Alice", email="alice@example.com")
    print(user_id)

    users = await lq.get_all_users()
    print(users)

    user = await lq.get_user_by_id(id=user_id)
    print(user)

    rows_count = await lq.delete_all_users()

    await lq.disconnect()


asyncio.run(main())

Transaction Support

Litequery also supports transactions in both async and sync contexts, allowing you to execute multiple queries atomicaly.

import litequery
import asyncio


async def main():
    lq = litequery.setup("database.db", "queries.sql")
    await lq.connect()

    try:
        async with lq.transaction():
            await lq.insert_user(name="Charlie", email="charlie@example.com")
            raise Exception("Force rollback")
            await lq.insert_user(name="Eve", email="eve@example.com")
    except Exception:
        print("Transaction failed")

    users = await lq.get_all_users()
    print(users)

    await lq.disconnect()


asyncio.run(main())

Wrapping Up

Litequery is all about simplicity and efficiency. Why wrestle with bloated ORMs when you can have raw SQL power? If you think there's a better way or have suggestions, let's hear them. Happy querying!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

litequery-0.3.0.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

litequery-0.3.0-py3-none-any.whl (4.8 kB view details)

Uploaded Python 3

File details

Details for the file litequery-0.3.0.tar.gz.

File metadata

  • Download URL: litequery-0.3.0.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for litequery-0.3.0.tar.gz
Algorithm Hash digest
SHA256 01d0cd892dedf64fa91a12b080bb9a9aa2b370920d676fa0a1d5201bc4c3b93a
MD5 ddfe8fbfbe76e97a47d3e9e4ce191fe2
BLAKE2b-256 1d411ca0ac11d7cebbed18cb442c7736bf4fe8d1397dfdf109f9a01184bde101

See more details on using hashes here.

File details

Details for the file litequery-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: litequery-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 4.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for litequery-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bc9391a253fa59743533c4abda00c6678ad55e58caa133ada1e8e941b1fd9ca0
MD5 31a7e9cdab90d549bfecfb39ae770a08
BLAKE2b-256 d78d3dbfde6de5a446c0c58524e3d9b20be8027aed1b0ba108d28bdf4e884730

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page