Skip to main content

Python in-memory ORM database

Project description

littletable - a Python module to give ORM-like access to a collection of objects

Build Status Binder

Introduction

The littletable module provides a low-overhead, schema-less, in-memory database access to a collection of user objects. littletable Tables will accept Python dicts or any user-defined object type, including:

  • namedtuples and typing.NamedTuples
  • dataclasses
  • types.SimpleNamespaces
  • attrs classes
  • PyDantic data models
  • traitlets

littletable infers the Table's "columns" from those objects' __dict__, __slots__, or _fields mappings to access object attributes.

If populated with Python dicts, they get stored as SimpleNamespaces.

In addition to basic ORM-style insert/remove/query/delete access to the contents of a Table, littletable offers:

  • simple indexing for improved retrieval performance, and optional enforcing key uniqueness
  • access to objects using indexed attributes
  • direct import/export to CSV, TSV, JSON, and Excel .xlsx files
  • clean tabular output for data presentation
  • simplified joins using "+" operator syntax between annotated Tables
  • the result of any query or join is a new first-class littletable Table
  • simple full-text search against multi-word text attributes
  • access like a standard Python list to the records in a Table, including indexing/slicing, iter, zip, len, groupby, etc.
  • access like a standard Python dict to attributes with a unique index, or like a standard Python defaultdict(list) to attributes with a non-unique index

littletable Tables do not require an upfront schema definition, but simply work off of the attributes in the stored values, and those referenced in any query parameters.

Optional dependencies

The base littletable code has no dependencies outside of the Python stdlib. However, some operations require additional package installs:

operation additional install required
Table.present rich
Table.excel_import/export openpyxl (plus defusedxml or lxml, defusedxml recommended)
Table.as_dataframe pandas

Importing data from CSV files

You can easily import a CSV file into a Table using Table.csv_import():

import littletable as lt
t = lt.Table().csv_import("my_data.csv")
# or
t = lt.csv_import("my_data.csv")

In place of a local file name, you can also specify an HTTP url:

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ["sepal-length", "sepal-width", "petal-length", "petal-width", "class"]
iris_table = Table('iris').csv_import(url, fieldnames=names)

You can also directly import CSV data as a string:

catalog = Table("catalog")

catalog_data = """\
sku,description,unitofmeas,unitprice
BRDSD-001,Bird seed,LB,3
BBS-001,Steel BB's,LB,5
MGNT-001,Magnet,EA,8"""

catalog.csv_import(catalog_data, transforms={'unitprice': int})

Data can also be directly imported from compressed .zip, .gz, and .xz files.

Files containing JSON-formatted records can be similarly imported using json_import().

Tabular output

To produce a nice tabular output for a table, you can use the embedded support for the rich module, as_html() in Jupyter Notebook, or the tabulate module:

Using table.present() (implemented using rich; present() accepts rich Table keyword args):

table(title_str).present(fields=["col1", "col2", "col3"])
    or
table.select("col1 col2 col3")(title_str).present(caption="caption text", 
                                                  caption_justify="right")

Using Jupyter Notebook:

from IPython.display import HTML, display
display(HTML(table.as_html()))

Using tabulate:

from tabulate import tabulate
print(tabulate((vars(rec) for rec in table), headers="keys"))

For More Info

Extended "getting started" notes at how_to_use_littletable.md.

Sample Demo

Here is a simple littletable data storage/retrieval example:

from littletable import Table

customers = Table('customers')
customers.create_index("id", unique=True)
customers.csv_import("""\
id,name
0010,George Jetson
0020,Wile E. Coyote
0030,Jonny Quest
""")

catalog = Table('catalog')
catalog.create_index("sku", unique=True)
catalog.insert({"sku": "ANVIL-001", "descr": "1000lb anvil", "unitofmeas": "EA","unitprice": 100})
catalog.insert({"sku": "BRDSD-001", "descr": "Bird seed", "unitofmeas": "LB","unitprice": 3})
catalog.insert({"sku": "MAGNT-001", "descr": "Magnet", "unitofmeas": "EA","unitprice": 8})
catalog.insert({"sku": "MAGLS-001", "descr": "Magnifying glass", "unitofmeas": "EA","unitprice": 12})

wishitems = Table('wishitems')
wishitems.create_index("custid")
wishitems.create_index("sku")

# easy to import CSV data from a string or file
wishitems.csv_import("""\
custid,sku
0020,ANVIL-001
0020,BRDSD-001
0020,MAGNT-001
0030,MAGNT-001
0030,MAGLS-001
""")

# print a particular customer name
# (unique indexes will return a single item; non-unique
# indexes will return a new Table of all matching items)
print(customers.by.id["0030"].name)

# see all customer names
for name in customers.all.name:
    print(name)

# print all items sold by the pound
for item in catalog.where(unitofmeas="LB"):
    print(item.sku, item.descr)

# print all items that cost more than 10
for item in catalog.where(lambda o: o.unitprice > 10):
    print(item.sku, item.descr, item.unitprice)

# join tables to create queryable wishlists collection
wishlists = customers.join_on("id") + wishitems.join_on("custid") + catalog.join_on("sku")

# print all wishlist items with price > 10 (can use Table.gt comparator instead of lambda)
bigticketitems = wishlists().where(unitprice=Table.gt(10))
for item in bigticketitems:
    print(item)

# list all wishlist items in descending order by price
for item in wishlists().sort("unitprice desc"):
    print(item)

# print output as a nicely-formatted table
wishlists().sort("unitprice desc")("Wishlists").present()

# print output as an HTML table
print(wishlists().sort("unitprice desc")("Wishlists").as_html())

# print output as a Markdown table
print(wishlists().sort("unitprice desc")("Wishlists").as_markdown())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

littletable-3.0.2.tar.gz (86.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

littletable-3.0.2-py3-none-any.whl (47.9 kB view details)

Uploaded Python 3

File details

Details for the file littletable-3.0.2.tar.gz.

File metadata

  • Download URL: littletable-3.0.2.tar.gz
  • Upload date:
  • Size: 86.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for littletable-3.0.2.tar.gz
Algorithm Hash digest
SHA256 6c3c310344e0105eb5ca882443977d7aba83095daa25562af4621c95a5ea67ae
MD5 7ca8f8a2e7f13ec09f0993e4171048f3
BLAKE2b-256 40ea6c6b7c0cefc7b52dabf892a6df9ca6dee8684b724a4d8934a5e479d5a12f

See more details on using hashes here.

File details

Details for the file littletable-3.0.2-py3-none-any.whl.

File metadata

  • Download URL: littletable-3.0.2-py3-none-any.whl
  • Upload date:
  • Size: 47.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for littletable-3.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3bc59780a59f00561d30d7fc6ab83a2bce0ca5c2e135c84a8a3e625ed3b41e76
MD5 6cccd78287c0dcdc6b973a8ff0bb2c8f
BLAKE2b-256 ef754410130eba6762f48836f9817d6b241a8688bc39dfe67b0315383b3e1a00

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page