Plot live data that updates in real time using matplotlib backend
Project description
live_plotter
Plot live data that updates in real time using matplotlib backend
Installing
Install:
pip install live_plotter
Usage
In this library, we have two axes of variation. The first axis of variation is using either LivePlotter
or LivePlotterGrid
. LivePlotter
creates 1 plot, while LivePlotterGrid
creates a grid of plots. The second axis of variation is using either LivePlotterGrid
or FastLivePlotterGrid
. LivePlotterGrid
is more flexible and dynamic, but this results in slower updates. FastLivePlotterGrid
requires that the user specify the number of plots in the figure from the beginning, but this allows it to update faster by modifying an existing plot rather than creating a new plot from scratch. Please refer to the associated example code for more details.
Lastly, you can add save_to_file_on_close=True
to save the figure to a file when the live plotter is deleted (either out of scope or end of script). You can add save_to_file_on_exception=True
to save the figure to a file when an exception occurs. Note this feature is experimental.
New feature: we have added FastLivePlotterGridSeparateProcess
, which is a wrapper around FastLivePlotterGrid
but puts the plotting code in another process. Plotting takes time, so running the plotting code in the same process as the main process can significantly slow things down, especially as plots get larger. This must be done on a new process instead of a new thread because the GUI does not work on non-main threads.
Options:
-
LivePlotter
-
LivePlotterGrid
-
FastLivePlotter
-
FastLivePlotterGrid
-
FastLivePlotterGridSeparateProcess
Live Plotter
Fast Live Plotter
Example Usage of LivePlotter
import numpy as np
from live_plotter import LivePlotter
live_plotter = LivePlotter(default_title="sin")
x_data = []
for i in range(25):
x_data.append(2 * i)
live_plotter.plot(x_data=np.array(x_data), y_data=np.sin(x_data))
Example Usage of FastLivePlotter
import numpy as np
from live_plotter import FastLivePlotter
live_plotter = FastLivePlotter(title="sin")
x_data = []
for i in range(25):
x_data.append(2 * i)
live_plotter.plot(x_data=np.array(x_data), y_data=np.sin(x_data))
Example Usage of LivePlotterGrid
import numpy as np
from live_plotter import LivePlotterGrid
live_plotter_grid = LivePlotterGrid(default_title="sin")
x_data = []
for i in range(25):
x_data.append(i)
live_plotter_grid.plot_grid(
y_data_list=[np.sin(x_data), np.cos(x_data)],
title=["sin", "cos"],
)
Example Usage of FastLivePlotterGrid
import numpy as np
from live_plotter import FastLivePlotterGrid
live_plotter_grid = FastLivePlotterGrid(title=["sin", "cos"], n_rows=2, n_cols=1)
x_data = []
for i in range(25):
x_data.append(i)
live_plotter_grid.plot_grid(
y_data_list=[np.sin(x_data), np.cos(x_data)],
)
Example Usage of FastLivePlotterGrid
using from_desired_n_plots
(recommended method for more complex use-cases)
import numpy as np
from live_plotter import FastLivePlotterGrid
y_data_dict = {
"exp(-x/10)": [],
"ln(x + 1)": [],
"x^2": [],
"4x^4": [],
"ln(2^x)": [],
}
plot_names = list(y_data_dict.keys())
live_plotter_grid = FastLivePlotterGrid.from_desired_n_plots(
title=plot_names, desired_n_plots=len(plot_names)
)
for i in range(25):
y_data_dict["exp(-x/10)"].append(np.exp(-i / 10))
y_data_dict["ln(x + 1)"].append(np.log(i + 1))
y_data_dict["x^2"].append(np.power(i, 2))
y_data_dict["4x^4"].append(4 * np.power(i, 4))
y_data_dict["ln(2^x)"].append(np.log(np.power(2, i)))
live_plotter_grid.plot_grid(
y_data_list=[np.array(y_data_dict[plot_name]) for plot_name in plot_names],
)
Example Usage of FastLivePlotterGridSeparateProcess
(recommended method to minimize plotting time impacting main code performance)
import numpy as np
import time
from live_plotter import FastLivePlotterGridSeparateProcess
N_ITERS = 100
SIMULATED_COMPUTATION_TIME_S = 0.1
OPTIMAL_TIME_S = N_ITERS * SIMULATED_COMPUTATION_TIME_S
live_plotter_separate_process = FastLivePlotterGridSeparateProcess(
plot_names=["sin", "cos"]
)
live_plotter_separate_process.start()
start_time_separate_process = time.time()
for i in range(N_ITERS):
time.sleep(SIMULATED_COMPUTATION_TIME_S)
live_plotter_separate_process.data_dict["sin"].append(np.sin(i))
live_plotter_separate_process.data_dict["cos"].append(np.cos(i))
live_plotter_separate_process.update()
time_taken_separate_process = time.time() - start_time_separate_process
print(f"Time taken separate process: {round(time_taken_separate_process, 1)} s")
print(f"OPTIMAL_TIME_S: {round(OPTIMAL_TIME_S, 1)} s")
Output:
Time taken separate process: 10.3 s
OPTIMAL_TIME_S: 10.0 s
You may get an error ConnectionResetError: [Errno 104] Connection reset by peer
at the end. This is not a problem, as it means the main process ended before the new process could be killed.
Note how this runs much faster than the equivalent same process code
import numpy as np
import time
from live_plotter import FastLivePlotterGrid
N_ITERS = 100
SIMULATED_COMPUTATION_TIME_S = 0.1
OPTIMAL_TIME_S = N_ITERS * SIMULATED_COMPUTATION_TIME_S
# Slower when plotting is on same process
live_plotter = FastLivePlotterGrid.from_desired_n_plots(
title=["sin", "cos"], desired_n_plots=2
)
x_data = []
start_time_same_process = time.time()
for i in range(N_ITERS):
x_data.append(i)
time.sleep(SIMULATED_COMPUTATION_TIME_S)
live_plotter.plot_grid(
y_data_list=[np.sin(x_data), np.cos(x_data)],
)
time_taken_same_process = time.time() - start_time_same_process
print(f"Time taken same process: {round(time_taken_same_process, 1)} s")
print(f"OPTIMAL_TIME_S: {round(OPTIMAL_TIME_S, 1)} s")
Output:
Time taken same process: 18.3 s
OPTIMAL_TIME_S: 10.0 s
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for live_plotter-0.0.7-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c5346b5ba0b4e46a33451d8ed51833717b423c749203b9d219043eb6de64df5 |
|
MD5 | cfdd1082a76e80e8bbfde91427007cc3 |
|
BLAKE2b-256 | e1f8d68c91fee736de7e73edd921d18040396acb93bfa7fe6625fd94de24ff7c |