Skip to main content

A package for obtaining quotation data from various online and offline sources and calculating the values of technical indicators based on these quotations.

Project description

live_trading_indicators

A package for obtaining quotation data from various online and offline sources and calculating the values of technical indicators based on these quotations. Data from online sources is received automatically. It is possible to receive data in real time. The received data is stored in a file cache with the possibility of quick use. Data integrity is carefully monitored.

As a source of quotes, you can use DataFrame Pandas and also receive data from the exchange online. The current version allows you to receive exchange data Binance (spot, futures USD-M, futures COIN-M).

The data can be obtained in numpy ndarray and Dataframe Pandas..

Package data from online sources is stored by default in the .lti folder of the user's home directory. A significant amount of data can be created in this folder, depending on the number of instruments and their timeframes. Only data received from online sources is saved.

Version 0.3.1

what's new

0.3.1

  • New indicator - Parabolic SAR.

0.3.0

  • Can use Pandas Dataframe as a source.
  • New indicator - BollingerBands.
  • New indicator - CCI.
  • New indicator - Supertrend.
  • New types of moving averages, now the moving average can be 'sma', 'ema', 'ema0', 'mma', 'mma0' (types of move average).
  • Indicators can have nan values.

Installing

pip install live_trading_indicators

Quick start

Getting quotes online

import live_trading_indicators as lti

indicators = lti.Indicators('binance')
ohlcv = indicators.OHLCV('ethusdt', '4h', '2022-07-01', '2022-07-01')
print(ohlcv)
Result:
<OHLCV data> symbol: ethusdt, timeframe: 4h
date: 2022-07-01T00:00 - 2022-07-01T20:00 (length: 6) 
empty bars: count 0 (0.00 %), max consecutive 0
Values: time, open, high, low, close, volume

Now ohlcv contains quotes in numpy array (ohlcv.time, ohlcv.open, ohlcv.high, ohlcv.low, ohlcv.close, ohlcv.volume).

Export in pandas dataframe

dataframe = ohlcv.pandas()
print(dataframe.head())
Result:
                 time     open     high      low    close       volume
0 2022-07-01 00:00:00  1071.02  1117.00  1050.46  1054.52  430646.8720
1 2022-07-01 04:00:00  1054.52  1076.43  1045.41  1066.81  275557.9328
2 2022-07-01 08:00:00  1066.81  1086.44  1033.44  1050.22  252105.5665
3 2022-07-01 12:00:00  1050.21  1074.23  1043.00  1056.86  298465.0695
4 2022-07-01 16:00:00  1056.86  1083.10  1054.82  1067.91  158796.2248

Example of getting indicator data from binance quotes online

import live_trading_indicators as lti

indicators = lti.Indicators('binance')
macd = indicators.MACD('ethusdt', '1h', '2022-07-01', '2022-07-30', period_short=15, period_long=26, period_signal=9)
print(macd[40:].pandas().head())
Result:
                 time      macd    signal      hist
0 2022-07-02 16:00:00 -1.659356 -3.498261  1.838905
1 2022-07-02 17:00:00 -0.981187 -3.111405  2.130218
2 2022-07-02 18:00:00 -0.072798 -2.604397  2.531599
3 2022-07-02 19:00:00  0.456062 -2.055381  2.511443
4 2022-07-02 20:00:00  0.797304 -1.474812  2.272116

Example of getting indicator data from Pandas quotes

import pandas
import live_trading_indicators as lti

dataframe = pandas.read_csv('tests/data/ETHUSDT-1m-2022-08-15.zip', header=None)
dataframe.rename(columns={0: 'time', 1: 'open', 2: 'high', 3: 'low', 4: 'close', 5: 'volume', }, inplace=True)
indicators = lti.Indicators(dataframe)
macd = indicators.MACD(period_short=15, period_long=26, period_signal=9)
print(macd[40:].pandas().head())
Result:
                 time      macd    signal      hist
0 2022-08-15 00:40:00  3.403958  2.320975  1.082984
1 2022-08-15 00:41:00  3.540428  2.643593  0.896835
2 2022-08-15 00:42:00  3.594786  2.930063  0.664722
3 2022-08-15 00:43:00  3.684476  3.170449  0.514027
4 2022-08-15 00:44:00  3.763257  3.354183  0.409074

Getting real-time data (the last 3 minutes on the 1m timeframe without an incomplete bar)

To get real-time data, you do not need to specify an end date.

import datetime as dt
import live_trading_indicators as lti

utcnow = dt.datetime.utcnow()
print(f'Now is {utcnow} UTC')
indicators = lti.Indicators('binance', utcnow - dt.timedelta(minutes=3))
ohlcv = indicators.OHLCV('btcusdt', '1m')
print(ohlcv.pandas())
Result:
Now is 2022-11-04 09:32:31.528230 UTC
                 time      open      high       low     close     volume
0 2022-11-04 09:29:00  20594.39  20595.60  20591.06  20592.38  177.35380
1 2022-11-04 09:30:00  20592.38  20600.98  20591.75  20600.30  178.40869
2 2022-11-04 09:31:00  20600.98  20623.93  20600.30  20621.45  431.11917

Getting real-time data (the last 3 minutes on the 1m timeframe and an incomplete bar)

To get data containing an incomplete bar, you must specify with_incomplete_bar=True when creating Indicators.

utcnow = dt.datetime.utcnow()
print(f'Now is {utcnow} UTC')
indicators = lti.Indicators('binance', utcnow - dt.timedelta(minutes=3), with_incomplete_bar=True)
ohlcv = indicators.OHLCV('btcusdt', '1m')
print(ohlcv.pandas())
Result:
Now is 2022-11-04 09:37:07.372986 UTC
                 time      open      high       low     close     volume
0 2022-11-04 09:34:00  20614.55  20618.50  20610.76  20615.97  263.96754
1 2022-11-04 09:35:00  20615.61  20624.00  20610.29  20616.53  258.53777
2 2022-11-04 09:36:00  20615.69  20617.75  20609.74  20611.46  199.43313
3 2022-11-04 09:37:00  20611.11  20611.89  20608.17  20609.02   15.15800

Details

All typical tamframes are supported up to 1 day inclusive: 1m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d. By default, log messages are output to the console, and you will see similar messages:

2022-11-04 12:32:31,528 Download using api symbol btcusdt timeframe 1m from 2022-11-04T00:00:00.000...

To disable these messages, run the following code and restart python.

import live_trading_indicators as lti
lti.config(print_log=False)

Indicators

When getting indicator values from online source, the first two parameters should be symbol and timeframe. Further, the period can optionally be specified. Then the parameters of the indicator are specified by name. When getting indicator values offline from Pandas DataFrame parameters symbol and timeframe are not specified.

Example (online)

indicators = lti.Indicators('binance', '2022-07-01', '2022-08-30')
sma = indicators.SMA('ethusdt', '1h', period=9)
macd = indicators.MACD('ethusdt', '1h', '2022-07-01', '2022-07-30', period_short=15, period_long=26, period_signal=9)

Example (offline)

dataframe = pandas.readcsv('ETHUSDT-1m-2022-08-15.zip')
indicators = lti.Indicators(dataframe)
macd = indicators.MACD(period_short=15, period_long=26, period_signal=9)
sma = indicators.SMA('2022-08-15T03:00', '2022-08-15T06:00', period=9)

The list of supported indicators and their parameters can be obtained by calling lti.help(). Parameters symbol, timeframe, time_start, time_end are omitted for brevity.

import live_trading_indicators as lti
print(lti.help())
  • BollingerBands(period=20, deviation=2, ma_type='sma', value='close')
  • CCI(period=)
  • EMA(period=, value='close')
  • MA(period=, value='close', ma_type='sma')
  • MACD(period_short=, period_long=, period_signal=, ma_type='ema', ma_type_signal='sma', value='close')
  • OBV()
  • OHLCV()
  • ParabolicSAR(start=0.02, maximum=0.2, increment=0.02)
  • RSI(period=, ma_type='mma', value='close')
  • SMA(period=, value='close')
  • Stochastic(period=, period_d=, smooth=3, ma_type='sma')
  • Supertrend(period=10, multipler=3, ma_type='mma')

Specifying the period

The period can be specified both during initialization of Indicators and in the indicator parameters. The data type when specifying the period can be datetime.date, datetime.datetime, numpy.datetime64, string, or a number in the format YYYYMMDD.

There are three strategies for specifying a time period:

1. The time period is specified when creating Indicators (base period)

Indicator values can be obtained for any period within the interval specified for Indicators. When exiting the specified interval, an exception will be raised LTIExceptionOutOfThePeriod.

Example
indicators = lti.Indicators('binance', 20220901, 20220930) # the base period
ohlcv = indicators.OHLCV('um/ethusdt', '1h') # the period is not specified, the base period is used
sma22 = indicators.SMA('um/ethusdt', '1h', 20220905, 20220915, period=22) # the period is specified
sma15 = indicators.SMA('um/ethusdt', '1h', 20220905, 20221015, period=15) # ERROR, going beyond the boundaries of the base period

2. The time period is not specified when creating Indicators

In this variant, when getting indicator data, the period should always be specified. When the interval is extended, data may be updated, this may slow down the work.

Example
indicators = lti.Indicators('binance') # period not specified
ohlcv = indicators.OHLCV('um/ethusdt', '1h', 20220801, 20220815) # the period must be specified
ma22 = indicators.SMA('um/ethusdt', '1h', 'close', 22, 20220905, 20220915) # the period must be specified

3. Real-time mode

In this variant, when creating Indicators, only the start date is specified. The data is always received up to the current moment. When creating Indicators, you can specify with_incomplete_bar=True, then the data of the last, incomplete bar will be received. See the example above.

Binance trading symbol codes

  • For the spot market, they completely coincide with the code on binance (btcusdt, ethusdt, etc.)
  • For the futures market USD-M, codes are prefixed with um/ (um/btcusdt, um/ethusdt, etc.)
  • For the futures market COIN-M, codes are prefixed with cm/ (cm/btcusd_perp, cm/ethusd_perp, etc.)

Types of move average

live-trading-indicators supports the following types of moving averages:

  • 'sma' - simple move average
  • 'ema' - classical exponential moving average with alpha = 2 / (n + 1), initialized by SMA (as in binance EMA)
  • 'ema0' - classical exponential moving average with alpha = 2 / (n + 1), initialized by the first value
  • 'mma' - Modified moving average with alpha = 1 / n, initialized by SMA (as in some binance indicators)
  • 'mma0' - Modified moving average с alpha = 1 / n, initialized by the first value

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

live_trading_indicators-0.3.1.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

live_trading_indicators-0.3.1-py3-none-any.whl (31.5 kB view details)

Uploaded Python 3

File details

Details for the file live_trading_indicators-0.3.1.tar.gz.

File metadata

File hashes

Hashes for live_trading_indicators-0.3.1.tar.gz
Algorithm Hash digest
SHA256 a624fc93e4320ec35ab6a33f74dbcba3697e46897e77e65a2913c66ce0025b44
MD5 5038ad535aede740b15fcbd6f24c730b
BLAKE2b-256 dc6c71002e694b2400919328d4fbd12522c32579647c5f025085a3870e1a71bc

See more details on using hashes here.

File details

Details for the file live_trading_indicators-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for live_trading_indicators-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7916b2cfd77d920e404c602fb245df10ca4947b9d61a5524d26248ff09cc37aa
MD5 3900ef02c296f5afea0a3ac9b598dee6
BLAKE2b-256 281a8e0305165100bf04d383e400d28616ce84a336589fcbb04f4e04634c362b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page