Skip to main content

live-cell analysis package including instance segmentation and tracker

Project description

LivecellX

Supported Python versions Development Status

LivecellX is a pure python framework for extracting (segmenting and tracking) sinlge cell trajectories from long live-cell imaging data, and then computing as well as analyzing single cell features in latent space.

This is a placeholder for LivecellX future releases. Currently this repo showcases a basic use case to segment images, track cells with opencv/SORT/btrack and generate cell features in our CX-A label-free dataset.
The majority of our analysis methods/notebooks are in https://github.com/xing-lab-pitt/xing-vimentin-dic-pipeline maintained by Xing lab, and being added to this repo. Please check later in April. 2023 for a complete version with our manuscript.

Installation

General package requirements

Note: if you encounter issue related to lap and numpy, please install numpy first and then install lap. If there is any issue with numba and numpy, please follow the error message and resolve numba and numpy version issues. (suggestions: ask chatgpt regarding how to resolve dependency issues)
pip install -r requirements.txt
pip install -r napari_requirements.txt pip install .
(or pip install -e . if you would like to install an editable version and develop the package)

Pytorch (including torchvision)
Please refer to Pytorch Official Website to receive most recent installation instructions. Here we simply provide two examples used in our cases.

Install via pip:
conda install pytorch torchvision -c pytorch

On our 2080Ti/3090 workstations and CUDA 11.7:
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

check if you are using cuda (refer to pytorch docs for TPU or other devices): torch.cuda.is_available(), torch.cuda.current_device(), torch.cuda.device_count()

Detectron2 (optional)

Please refer to latest detectron2 documentation to install detectron2 for segmentation if you cannot build from source with the following commands.

Prebuilt (Easier and preferred by us):
https://detectron2.readthedocs.io/en/latest/tutorials/install.html#install-pre-built-detectron2-linux-only

Build from source:
https://detectron2.readthedocs.io/en/latest/tutorials/install.html#build-detectron2-from-source

git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2

For {avi, mp4} movie generation conda install -c conda-forge ffmpeg

Precommit [Dev]

pip install pre-commit
pre-commit install

Expected input/output for each submodule

Note
If you already have satisfying segmentation models or segmentation results, you may skip Annotation and Segmentation part below.

Annotation

input: raw image files After annotating imaging datasets, you should have json files in COCO format ready for segmentation training.

Labelme

Apply labelme to your datasets following our annotation protocol.

Convert labelme json to COCO format.

A fixed version of labelme2coco implementation is included in our package. Please refer to our tutorial on how to convert your labelme json to COCO format.
For CVAT, please export the annotation results as COCO, as shown in our annotation protocol.

Segmentation

Segmentation has two phase. If you already have pytorch or tensorflow models trained on your dataset, you may skip training phase.

training phase

input: COCO json files

output: pytorch model (.pth file)

prediction phase

input: raw images, a trained machine-learning based model
outputs: SingleCellStatic json outputs

Track

input: SingleCellStatic

  • contour
  • bounding box

output: SingleCellTrajectoryColletion

  • holding a collection of singleCellTrajectory each containing single cell time-lapse data
  • trajectory-wise feature can be calculated after track stage or at trajectory stage.

Trajectory

input: SingleCellTrajectoryColletion

output:

Visualizer

track.movie: generate_single_trajectory_movie()

visualizer: viz_traj, viz_traj_collection

{Documentation placeholder} [Move to docs/ and auto generate by readthedocs]

Analyze trajectories based on specific research topics

SingleCellStatic

class designed to hold all information about a single cell at some timepoint
attributes

  • time point
  • id (optional)
  • contour coordinates
  • cell bounding box
  • img crop (lazy)
  • feature map
  • original img (reference/pointer)

SingleCellTrajectory

  • timeframe_set

SingleCellTrajectoryCollection

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

livecellx-0.0.2.tar.gz (78.2 MB view details)

Uploaded Source

Built Distribution

livecellx-0.0.2-py3-none-any.whl (323.9 kB view details)

Uploaded Python 3

File details

Details for the file livecellx-0.0.2.tar.gz.

File metadata

  • Download URL: livecellx-0.0.2.tar.gz
  • Upload date:
  • Size: 78.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for livecellx-0.0.2.tar.gz
Algorithm Hash digest
SHA256 5ceedbda727577cbabbc049aaebba9be24930b0f4d19852408fbf8d4fa475478
MD5 8d2c9ae0901f8e80b7caba28dc933393
BLAKE2b-256 22a1c9e18f824c407dd7df7cc0972e30f8831c2caf01cf52d903d819131610e3

See more details on using hashes here.

File details

Details for the file livecellx-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: livecellx-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 323.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for livecellx-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 171511ccc77e1a9bb0d82fbcceb309039849abbf1daa32bb0ce72a9390d6a93c
MD5 db171dba1c77c032930dcaa3c8ff42d8
BLAKE2b-256 3dd60e79f914c708ff5216b5b73b122f16d1d0d8eb5b4bd2f64e58bce2ec80fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page