Skip to main content

Computing descriptive statistics over streaming data

Project description

livestat

Python module to compute running statistics over data, like when measuring timings from a stream.

Properties: - count - min,max,mean - std and variance - kurtosis and skewness # allows to measure the “normality of the dataset”

The main class is LiveStat to which data can be appended with append(x). For incremental values the DeltaLiveStat provides an easy to use helper.

Usage:

from livestat import LiveStat,DeltaLiveStat

x = LiveStat(“optionalname”) x.append(10) x.append(20) print x # count is 2

x = DeltaLiveStat(“dt”) x.append(10) x.append(20) print x # count is 1 containing the difference

#also from array x.extend([10,20,30,40,50])

Extra Features:

# the LiveStat objects can be combined for example when performing over different data Windows or in a multiprocessing environment x.merge(y) # now x contains the merge of the statistics

# the LiveStat object can be multipled by scalar or translated, for the objective of performing some unit transformation. All the measures are transformed appropriately x + 5 x * 5

In progress: - numpy support - normality test

Package Repository

This project is maintained here: https://github.com/sankazim/pylivestat

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for livestat, version 0.1.1
Filename, size File type Python version Upload date Hashes
Filename, size livestat-0.1.1.macosx-10.9-intel.exe (72.6 kB) File type Windows Installer Python version any Upload date Hashes View
Filename, size livestat-0.1.1.tar.gz (8.1 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page