Skip to main content

Utility functions to write LivingPark notebooks.

Project description

LivingPark utils

A collection of utility functions to write LivingPark notebooks.

Usage examples:

import livingpark_utils
from livingpark_utils import download
from livingpark_utils.clinical import moca2mmse
from livingpark_utils.dataset import ppmi

utils = livingpark_utils.LivingParkUtils()
downloader = download.ppmi.Downloader(utils.study_files_dir)

utils.notebook_init()
utils.get_study_files(["Demographics.csv"], default=downloader)
utils.get_T1_nifti_files(
    cohort, default=downloader
)  # `cohort` is of type: pd.DataFrame

ppmi.find_nifti_file_in_cache(x["PATNO"], x["EVENT_ID"], x["Description"])
ppmi.disease_duration()

moca2mmse(2)

Exclude subjects from a cohort without leaking patient information.

from livingpark_utils.ignore import (
    insert_hash,
    remove_ignored,
)

# Assuming a cohort definition defined as `cohort`.
cohort = insert_hash(cohort, columns=["PATNO", "EVENT_ID", "Description"])
remove_ignored(cohort, ignore_file=".ppmiignore")

Usage to execute utility notebooks:

from livingpark_utils.scripts import run

run.mri_metadata()
run.pd_status()

Note: Optionally use the %%capture cell magic to further hide notebook outputs.

CLI commands

Download T1 nifti files using a cohort definition file.

$ get_T1_nifti_files <cohort_file> --downloader (ppmi) [--symlink=<bool>]
[--force=<bool>] [--timeout=<int>]

The cohort_file is a csv file created beforehand. Respectively to the chosen downloader, it must have the following columns:

  • PPMI: PATNO, EVENT_ID, and Description.

Troubleshooting

Permission issues on Windows

We use symbolic links when creating the folder for cached data. Unfortunately, by default, Windows does not authorize users to create symbolic links. To fix this issue on your machine, please follow the guide from this blog post.

Contributing guidelines

We welcome contributions of any kind in the form of Pull-Request to this repository. See also LivingPark contributing guidelines.

Make sure to:

  • Use Python type annotations
  • Include Python docstrings using numpydoc format for all functions
  • Format docstrings
  • Run psf/black on the files you modify
  • Run pre-commit run --all before committing, this will be checked in your PR

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

livingpark_utils-0.9.5.tar.gz (56.1 kB view details)

Uploaded Source

Built Distribution

livingpark_utils-0.9.5-py3-none-any.whl (69.7 kB view details)

Uploaded Python 3

File details

Details for the file livingpark_utils-0.9.5.tar.gz.

File metadata

  • Download URL: livingpark_utils-0.9.5.tar.gz
  • Upload date:
  • Size: 56.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for livingpark_utils-0.9.5.tar.gz
Algorithm Hash digest
SHA256 aaa431e24f2a6f19c10221544f8badac13177b3cfafa52ff361c36cb36efcdb0
MD5 af9a97c546e024bae55410b08b77cddc
BLAKE2b-256 cec827dd54213b8feacfc63bba6a83d0acb38eb516710cb05482fa028aaf0b21

See more details on using hashes here.

File details

Details for the file livingpark_utils-0.9.5-py3-none-any.whl.

File metadata

File hashes

Hashes for livingpark_utils-0.9.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d1a9b32327f2b5d8d53723de53ce8657c8a54eadaf1dc0af9476876766f0bd9a
MD5 186d28275c490fe50de0e55c5dd0f486
BLAKE2b-256 6179a7fa0f6f90ab2b4475d796b18a56e4efb174391be39ca0a44374f0a6615a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page