Skip to main content

Llama Agentic System

Project description

llama-agentic-system

PyPI - Downloads Discord

This repo allows you to run Llama 3.1 as a system capable of performing "agentic" tasks like:

  • Breaking a task down and performing multi-step reasoning.
  • Ability to use tools
    • built-in: the model has built-in knowledge of tools like search or code interpreter
    • zero-shot: the model can learn to call tools using previously unseen, in-context tool definitions

Additionally, we would like to shift safety evaluation from the model level to the overall system level. This allows the underlying model to remain broadly steerable and adaptable to use cases which need varying levels of safety protection.

One of the safety protections is provided by Llama Guard. By default, Llama Guard is used for both input and output filtering. However, the system can be configured to modify this default setting. For example, it is recommended to use Llama Guard for output filtering in situations where refusals to benign prompts are frequently observed, as long as safety requirements are met for your use case.

[!NOTE] The API is still evolving and may change. Feel free to build and experiment, but please don't rely on its stability just yet!

LLama Agentic System Installation and Setup Guide

Create a Conda Environment

Create a new conda environment with the required Python version:

# Create and activate a virtual environment
ENV=agentic_env
with-proxy conda create -n $ENV python=3.10
cd <path-to-llama-agentic-system-repo>
conda activate $ENV

# Install the package
pip install -r requirements.txt

Note that you can also install this simply as a python package by using pip install llama-agentic-system.

Creation of simple virtual environments

In Linux

# Create and activate a virtual environment
python3 -m venv venv
source venv/bin/activate

# Install the package
pip install llama-agentic-system

For Windows

# Create and activate a virtual environment
python -m venv venv
venv\Scripts\activate  # For Command Prompt
# or
.\venv\Scripts\Activate.ps1  # For PowerShell
# or
source venv\Scripts\activate  # For Git

# Install the package
pip install llama-agentic-system

Running FP8

If you want to run with on-the-fly fp8 quantization, you need fbgemm-gpu package which requires torch >= 2.4.0 (currently only in nightly, but releasing shortly...). You can find the fp8_requirements in the llama-toolchain repository at https://github.com/meta-llama/llama-toolchain/blob/main/fp8_requirements.txt.

ENV=fp8_env
conda create -n $ENV python=3.10
conda activate $ENV

pip3 install -r fp8_requirements.txt

Install as a Package

Install the package using pip:

pip install -e .

This will install all the dependencies as needed.

We also need bubblewrap to run code executor as a tool for the agent. Install bubblewrap

Test Installation

Test the installation by running the following command:

llama --help

This should print the CLI help message.

usage: llama [-h] {download,inference,model,agentic_system} ...

Welcome to the LLama cli

options:
  -h, --help            show this help message and exit

subcommands:
  {download,inference,model,agentic_system}

This Llama CLI will help you to do the following

  • Download the latest Llama3.1 models from HuggingFace
  • Configure and start a inference server on your local machine
  • Configure and run apps that showcase agentic systems built using the Llama Stack APIs.

Lets go step by step and finish the setup process,

Download Checkpoints (or use existing models)

Download the required checkpoints using the following commands:

# download the 8B model, this can be run on a single GPU
llama download meta-llama/Meta-Llama-3.1-8B-Instruct

# you can also get the 70B model, this will require 8 GPUs however
llama download meta-llama/Meta-Llama-3.1-70B-Instruct

# llama-agents have safety enabled by default. For this, you will need
# safety models -- Llama-Guard and Prompt-Guard
llama download meta-llama/Prompt-Guard-86M --ignore-patterns original
llama download meta-llama/Llama-Guard-3-8B --ignore-patterns original

Important: Set your environment variable HF_TOKEN or pass in --hf-token to the command to validate your access. You can find your token at https://huggingface.co/settings/tokens.

Tip: Default for llama download is to run with --ignore-patterns *.safetensors since we use the .pth files in the original folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with --ignore-patterns original so that safetensors are downloaded and .pth files are ignored.

Configure Inference Server Config

Configure the inference server config by running the following command:

llama inference configure

Follow the system prompts to fill in checkpoints, model_parallel_size, etc. When asked for the checkpoint directory for the model, provide the local model path from the previous step. This writes configs to ~/.llama/configs/inference.yaml.

Tip: Note that while you download HF checkpoints, we rely on the original .pth files stored in the original folder. So make sure to use <path>/original for checkpoint directory if necessary.

You should see output like

YAML configuration has been written to <HOME_DIR>/.llama/configs/inference.yaml

All configurations as well as models are stored in ~/.llama

Run Inference Server

Run the inference server by running the following command:

llama inference start

This will start an inference server that runs the model on localhost:5000 by default.

[!NOTE] Inference config is in ~/.llama/configs/inference.yaml. Feel free to increase max_seq_len or change checkpoint directories as needed.

[!IMPORTANT] The inference server currently only supports CUDA. It will not work on Apple Silicon machines.

You'll see the output:

Loading config from : ~/.llama/configs/inference.yaml
Yaml config:
------------------------
inference_config:
  impl_config:
    impl_type: inline
    checkpoint_config:
      checkpoint:
        checkpoint_type: pytorch
        checkpoint_dir: <HOMEDIR>/local/checkpoints/Meta-Llama-3.1-8B-Instruct-20240710150000//
        tokenizer_path: <HOMEDIR>/local/checkpoints/Meta-Llama-3.1-8B-Instruct-20240710150000//tokenizer.model
        model_parallel_size: 1
        quantization_format: bf16
    quantization: null
    torch_seed: null
    max_seq_len: 2048
    max_batch_size: 1

------------------------
Listening on :::5000
INFO:     Started server process [2412753]
INFO:     Waiting for application startup.
> initializing model parallel with size 1
> initializing ddp with size 1
> initializing pipeline with size 1

Loaded in 13.86 seconds
NCCL version 2.20.5+cuda12.4
Finished model load YES READY
INFO:     Application startup complete.
INFO:     Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)

This server is running a Llama model locally.

[!TIP] You might need to use the flag --disable-ipv6 to Disable IPv6 support

Now that the inference server is setup, the next thing would be to run an agentic app using the llama-agentic-system APIs.

We have built sample scripts, notebooks and a UI chat interface ( using Mesop ! ) to help you get started.

Configure Agentic System

Configure the agentic system config by running the following command:

llama agentic_system configure

Follow the system prompts. When asked for a model checkpoint directory, provide the local model path from the previous step. This writes a config to ~/.llama/configs/agentic_system/inline.yaml.

This config will look something like this

agentic_system_config:
  impl_config:
    impl_type: inline
    inference_config:
      impl_config:
        impl_type: remote
        # the url to the inference server
        url: http://localhost:5000
  # Safety shields
  safety_config:
    llama_guard_shield:
      model_dir: <path>
      excluded_categories: []
      disable_input_check: False
      disable_output_check: False
    prompt_guard_shield:
      model_dir: <path>

# Use this config to change the sampling params
# when interacting with an agent instance
sampling_params:
  temperature: 0.0
  strategy: "top_p"
  top_p: 0.95
  top_k: 0

Add API Keys for Tools

In your repo root directory, add API Keys for tools. Tools that model supports which needs API Keys --

Tip If you do not have API keys, you can still run the app without model having access to the tools.

Start an App and Interact with the Server

Start an app (inline) and interact with it by running the following command:

mesop app/main.py

This will start a mesop app and you can go to localhost:32123 to play with the chat interface.

Chat App

Similar to this main app, you can also try other variants

  • PYTHONPATH=. mesop app/chat_with_custom_tools.py to showcase how custom tools are integrated
  • PYTHONPATH=. mesop app/chat_moderation_with_llama_guard.py to showcase how the app is modified to act as a chat moderator for safety

Tip Keep the inference server running in the background for faster iteration cycle

Start a script that can create an agent and interact with the inference server

NOTE: Ensure that inference server is still running.

cd <path-to-llama-agentic-system>
conda activate $ENV
llama inference start  # If not already started

PYTHONPATH=. python examples/scripts/vacation.py localhost 5000

You should see outputs to stdout of the form --

Environment: ipython
Tools: brave_search, wolfram_alpha, photogen

Cutting Knowledge Date: December 2023
Today Date: 23 July 2024


User> I am planning a trip to Switzerland, what are the top 3 places to visit?
Final Llama Guard response shield_type=<BuiltinShield.llama_guard: 'llama_guard'> is_violation=False violation_type=None violation_return_message=None
Ran PromptGuardShield and got Scores: Embedded: 0.9999765157699585, Malicious: 1.1110752893728204e-05
StepType.shield_call> No Violation
role='user' content='I am planning a trip to Switzerland, what are the top 3 places to visit?'
StepType.inference> Switzerland is a beautiful country with a rich history, culture, and natural beauty. Here are three must-visit places to add to your itinerary: ....

Tip You can optionally do --disable-safety in the scripts to avoid running safety shields all the time.

Feel free to reach out if you have questions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

llama_agentic_system-0.0.2-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file llama_agentic_system-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_agentic_system-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1560ab8d5a0aa6dfc654738837a4b4e16eb484e85ff795d10677d341f9090606
MD5 deab1e3fea8e1ac958f4b9172487edfc
BLAKE2b-256 4fb78b06a38312a0c569713eafd0c7aa6cca7821af05b1dfb374676dc85d2ad4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page