Skip to main content

A Python package for creating Gradio applications with llama.cpp models

Project description

llama-cpp-python-gradio

is a Python package that makes it easy for developers to create machine learning apps powered by llama.cpp models using Gradio.

Installation

You can install llama-cpp-python-gradio directly using pip:

pip install llama-cpp-python-gradio

Basic Usage

First, you'll need a GGUF model file for llama.cpp. Then in a Python file, write:

import gradio as gr
import llama_cpp_python_gradio

gr.load(
    model_path='path/to/your/model.gguf',
    src=llama_cpp_python_gradio.registry,
).launch()

Run the Python file, and you should see a Gradio Interface connected to your local llama.cpp model!

Customization

You can customize the interface by passing additional arguments to the Llama constructor:

import gradio as gr
import llama_cpp_python_gradio

gr.load(
    model_path='path/to/your/model.gguf',
    src=llama_cpp_python_gradio.registry,
    n_ctx=2048,  # context window size
    n_gpu_layers=1  # number of layers to offload to GPU
).launch()

Under the Hood

The llama-cpp-python-gradio library has two main dependencies: llama-cpp-python and gradio. It provides a "registry" function that creates a Gradio ChatInterface connected to your local llama.cpp model.

The interface supports both text and image inputs (for multimodal models), with automatic handling of file uploads and base64 encoding.


Note: Make sure you have a compatible GGUF model file before running the interface. You can download models from sources like Hugging Face or convert existing models to GGUF format.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_cpp_python_gradio-0.0.1.tar.gz (110.1 kB view details)

Uploaded Source

Built Distribution

llama_cpp_python_gradio-0.0.1-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file llama_cpp_python_gradio-0.0.1.tar.gz.

File metadata

File hashes

Hashes for llama_cpp_python_gradio-0.0.1.tar.gz
Algorithm Hash digest
SHA256 3b879f480ed0495c2be3f584e2b8968712a4b24469e9428813544eec6e23f28e
MD5 a57e4abef76c681d0234a4b6aae2ee32
BLAKE2b-256 c64629136963105f1d990995b2258ef072d1187c261d70a0400b81f86d5b8812

See more details on using hashes here.

File details

Details for the file llama_cpp_python_gradio-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_cpp_python_gradio-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c2a0979049b8e31b669995000fa28df721da44b93644da5e801fdf2c65b8a27f
MD5 970a5c8d377ea4c2d01d827cda896f47
BLAKE2b-256 c26ef7e695e76afb1592cf26f198f342bdc566780dafc612527f78854e5a3f0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page