Skip to main content

UpTrain Callback for performing evaluations on the LlamaIndex pipeline

Project description

LlamaIndex Callbacks Integration: UpTrain

UpTrain (github || website || docs) is an open-source platform to evaluate and improve Generative AI applications. It provides grades for 20+ preconfigured checks (covering language, code, embedding use cases), performs root cause analysis on failure cases and gives insights on how to resolve them. Once you add UpTrainCallbackHandler to your existing LlamaIndex pipeline, it will automatically capture the right data, run evaluations and display the results in the output.

More details on UpTrain's evaluations can be found here.

Selected operators from the LlamaIndex pipeline are highlighted for demonstration:

1. RAG Query Engine Evaluations:

The RAG query engine plays a crucial role in retrieving context and generating responses. To ensure its performance and response quality, we conduct the following evaluations:

  • Context Relevance: Determines if the context extracted from the query is relevant to the response.
  • Factual Accuracy: Assesses if the LLM is hallucinating or providing incorrect information.
  • Response Completeness: Checks if the response contains all the information requested by the query.

2. Sub-Question Query Generation Evaluation:

The SubQuestionQueryGeneration operator decomposes a question into sub-questions, generating responses for each using a RAG query engine. To evaluate the performance of SubQuery module, we add another check as well as run the above three for all the sub-queries:

  • Sub Query Completeness: Assures that the sub-questions accurately and comprehensively cover the original query.

3. Re-Ranking Evaluations:

Re-ranking involves reordering nodes based on relevance to the query and choosing the top n nodes. Different evaluations are performed based on the number of nodes returned after re-ranking.

a. Same Number of Nodes

  • Context Reranking: Checks if the order of re-ranked nodes is more relevant to the query than the original order.

b. Different Number of Nodes:

  • Context Conciseness: Examines whether the reduced number of nodes still provides all the required information.

These evaluations collectively ensure the robustness and effectiveness of the RAG query engine, SubQuestionQueryGeneration operator, and the re-ranking process in the LlamaIndex pipeline.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_callbacks_uptrain-0.4.0.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_callbacks_uptrain-0.4.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_callbacks_uptrain-0.4.0.tar.gz
Algorithm Hash digest
SHA256 2d0b74803fe4ee8c133f1e422e3ddea2057b710798801f032ec443c51ebe0165
MD5 ceb7d564f49eb93f530e1a63704a5d77
BLAKE2b-256 ca2a137043b6a9f1be5deb06543c0691c3206f95e891da5835bb7a59f575df78

See more details on using hashes here.

File details

Details for the file llama_index_callbacks_uptrain-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_callbacks_uptrain-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4ccaf0213d4c77553e68e07432e97ecba39591f69806b0b9f8869268fe6e6305
MD5 295e4b38cbd306ccfc6820d11bb2fea6
BLAKE2b-256 bbbc3df749eb7d8d1baa4378ac75901d88dbc6b606f5aec5c7fc569f2a0d4447

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page