Skip to main content

llama-index embeddings deepinfra integration

Project description

LlamaIndex Embeddings Integration: Deepinfra

With this integration, you can use the Deepinfra embeddings model to get embeddings for your text data. Here is the link to the embeddings models.

First, you need to sign up on the Deepinfra website and get the API token. You can copy model_ids over the model cards and start using them in your code.

Installation

pip install llama-index llama-index-embeddings-deepinfra

Usage

from dotenv import load_dotenv, find_dotenv
from llama_index.embeddings.deepinfra import DeepInfraEmbeddingModel

# Load environment variables
_ = load_dotenv(find_dotenv())

# Initialize model with optional configuration
model = DeepInfraEmbeddingModel(
    model_id="BAAI/bge-large-en-v1.5",  # Use custom model ID
    api_token="YOUR_API_TOKEN",  # Optionally provide token here
    normalize=True,  # Optional normalization
    text_prefix="text: ",  # Optional text prefix
    query_prefix="query: ",  # Optional query prefix
)

# Example usage
response = model.get_text_embedding("hello world")

# Batch requests
texts = ["hello world", "goodbye world"]
response = model.get_text_embedding_batch(texts)

# Query requests
response = model.get_query_embedding("hello world")


# Asynchronous requests
async def main():
    text = "hello world"
    response = await model.aget_text_embedding(text)


if __name__ == "__main__":
    import asyncio

    asyncio.run(main())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file llama_index_embeddings_deepinfra-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_embeddings_deepinfra-0.3.0.tar.gz
Algorithm Hash digest
SHA256 6271692651dc33bde3caf84c7565550760283fde00bb21e751f0b63758345345
MD5 c1a2194ce41f36525aed6abf4f4d5950
BLAKE2b-256 6522a775f9809493087db759a43323fecc5ffcdf100188d9b706c8a2a82260d7

See more details on using hashes here.

File details

Details for the file llama_index_embeddings_deepinfra-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_deepinfra-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 938c3bd89fbab8080916b4c828faa9503b857654886fe01cf9be0f165cbc309a
MD5 a046d7d11abe164ddceda9bb05544243
BLAKE2b-256 9ae7951e76028fde06bde70fdada0decfae4fa87afc0aeca12c707d1ddeb5849

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page