Skip to main content

llama-index embeddings IBM watsonx.ai integration

Project description

LlamaIndex Embeddings Integration: IBM

This package integrates the LlamaIndex LLMs API with the IBM watsonx.ai Foundation Models API by leveraging ibm-watsonx-ai SDK. With this integration, you can use one of the embedding models that are available in IBM watsonx.ai to embed a single string or a list of strings.

Installation

pip install llama-index-embeddings-ibm

Usage

Setting up

To use IBM's models, you must have an IBM Cloud user API key. Here's how to obtain and set up your API key:

  1. Obtain an API Key: For more details on how to create and manage an API key, refer to Managing user API keys.
  2. Set the API Key as an Environment Variable: For security reasons, it's recommended to not hard-code your API key directly in your scripts. Instead, set it up as an environment variable. You can use the following code to prompt for the API key and set it as an environment variable:
import os
from getpass import getpass

watsonx_api_key = getpass()
os.environ["WATSONX_APIKEY"] = watsonx_api_key

Alternatively, you can set the environment variable in your terminal.

  • Linux/macOS: Open your terminal and execute the following command:

    export WATSONX_APIKEY='your_ibm_api_key'
    

    To make this environment variable persistent across terminal sessions, add the above line to your ~/.bashrc, ~/.bash_profile, or ~/.zshrc file.

  • Windows: For Command Prompt, use:

    set WATSONX_APIKEY=your_ibm_api_key
    

Load the model

You might need to adjust embedding parameters for different tasks.

truncate_input_tokens = 3

Initialize the WatsonxEmbeddings class with the previously set parameters.

Note:

In this example, we’ll use the project_id and Dallas URL.

You need to specify the model_id that will be used for inferencing.

from llama_index.embeddings.ibm import WatsonxEmbeddings

watsonx_embedding = WatsonxEmbeddings(
    model_id="ibm/slate-125m-english-rtrvr",
    url="https://us-south.ml.cloud.ibm.com",
    project_id="PASTE YOUR PROJECT_ID HERE",
    truncate_input_tokens=truncate_input_tokens,
)

Alternatively, you can use Cloud Pak for Data credentials. For details, see watsonx.ai software setup.

watsonx_embedding = WatsonxEmbeddings(
    model_id="ibm/slate-125m-english-rtrvr",
    url="PASTE YOUR URL HERE",
    username="PASTE YOUR USERNAME HERE",
    password="PASTE YOUR PASSWORD HERE",
    instance_id="openshift",
    version="4.8",
    project_id="PASTE YOUR PROJECT_ID HERE",
    truncate_input_tokens=truncate_input_tokens,
)

Usage

Embed query

query = "Example query."

query_result = watsonx_embedding.get_query_embedding(query)
print(query_result[:5])

Embed list of texts

texts = ["This is a content of one document", "This is another document"]

doc_result = watsonx_embedding.get_text_embedding_batch(texts)
print(doc_result[0][:5])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_embeddings_ibm-0.3.0.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_embeddings_ibm-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_embeddings_ibm-0.3.0.tar.gz
Algorithm Hash digest
SHA256 af3d822b9988e12d83528eeeeee5c1e82a2cc52729fdbf3ff33f3463b59d85b5
MD5 2e6225a1c9951861a4a5fab9c7cfd3ee
BLAKE2b-256 56f655372708cce6169e5fa66782c9290d04435dbace0b3e5e4ded8518d51d63

See more details on using hashes here.

File details

Details for the file llama_index_embeddings_ibm-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_ibm-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d81574b621ddb57172de23b459f13c8fc9a00c55a9daf52ae7d6b1668ccb95f3
MD5 23c60c883ce35508db4a6e8c8f9a85e4
BLAKE2b-256 5e77b23fc1e40f73421aa65e4ec31c98399c706ff6b70807699911331fdb7e57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page