Skip to main content

llama-index embeddings IBM watsonx.ai integration

Project description

LlamaIndex Embeddings Integration: IBM

This package integrates the LlamaIndex LLMs API with the IBM watsonx.ai Foundation Models API by leveraging ibm-watsonx-ai SDK. With this integration, you can use one of the embedding models that are available in IBM watsonx.ai to embed a single string or a list of strings.

Installation

pip install llama-index-embeddings-ibm

Usage

Setting up

To use IBM's models, you must have an IBM Cloud user API key. Here's how to obtain and set up your API key:

  1. Obtain an API Key: For more details on how to create and manage an API key, refer to Managing user API keys.
  2. Set the API Key as an Environment Variable: For security reasons, it's recommended to not hard-code your API key directly in your scripts. Instead, set it up as an environment variable. You can use the following code to prompt for the API key and set it as an environment variable:
import os
from getpass import getpass

watsonx_api_key = getpass()
os.environ["WATSONX_APIKEY"] = watsonx_api_key

Alternatively, you can set the environment variable in your terminal.

  • Linux/macOS: Open your terminal and execute the following command:

    export WATSONX_APIKEY='your_ibm_api_key'
    

    To make this environment variable persistent across terminal sessions, add the above line to your ~/.bashrc, ~/.bash_profile, or ~/.zshrc file.

  • Windows: For Command Prompt, use:

    set WATSONX_APIKEY=your_ibm_api_key
    

Load the model

You might need to adjust embedding parameters for different tasks.

truncate_input_tokens = 3

Initialize the WatsonxEmbeddings class with the previously set parameters.

Note:

In this example, we’ll use the project_id and Dallas URL.

You need to specify the model_id that will be used for inferencing.

from llama_index.embeddings.ibm import WatsonxEmbeddings

watsonx_embedding = WatsonxEmbeddings(
    model_id="ibm/slate-125m-english-rtrvr",
    url="https://us-south.ml.cloud.ibm.com",
    project_id="PASTE YOUR PROJECT_ID HERE",
    truncate_input_tokens=truncate_input_tokens,
)

Alternatively, you can use Cloud Pak for Data credentials. For details, see watsonx.ai software setup.

watsonx_embedding = WatsonxEmbeddings(
    model_id="ibm/slate-125m-english-rtrvr",
    url="PASTE YOUR URL HERE",
    username="PASTE YOUR USERNAME HERE",
    password="PASTE YOUR PASSWORD HERE",
    instance_id="openshift",
    version="4.8",
    project_id="PASTE YOUR PROJECT_ID HERE",
    truncate_input_tokens=truncate_input_tokens,
)

Usage

Embed query

query = "Example query."

query_result = watsonx_embedding.get_query_embedding(query)
print(query_result[:5])

Embed list of texts

texts = ["This is a content of one document", "This is another document"]

doc_result = watsonx_embedding.get_text_embedding_batch(texts)
print(doc_result[0][:5])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_embeddings_ibm-0.2.0.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_embeddings_ibm-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_embeddings_ibm-0.2.0.tar.gz
Algorithm Hash digest
SHA256 19f7625183ac1897ff8eed2507a96ef8ab91fae42d577582fce20b44a3e2c3ac
MD5 bc9d09acadfd9d675c02f8139d9f2723
BLAKE2b-256 d40c9d13f7a33460583fa046d4eea4fc669f32a066eddfa4d43532def24e69cc

See more details on using hashes here.

Provenance

File details

Details for the file llama_index_embeddings_ibm-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_ibm-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 79acd879dfa076e7bb0cde5931fd032e28c0ccecbe84a00cdb0548bd51374ede
MD5 3591503439f251bfff9a774bdd11a995
BLAKE2b-256 7aac681f0443d009a6664680b64a248a33eb62b271e6f94da80ed285be19297d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page