Skip to main content

llama-index embeddings IBM watsonx.ai integration

Project description

LlamaIndex Embeddings Integration: IBM

This package integrates the LlamaIndex LLMs API with the IBM watsonx.ai Foundation Models API by leveraging ibm-watsonx-ai SDK. With this integration, you can use one of the embedding models that are available in IBM watsonx.ai to embed a single string or a list of strings.

Installation

pip install llama-index-embeddings-ibm

Usage

Setting up

To use IBM's models, you must have an IBM Cloud user API key. Here's how to obtain and set up your API key:

  1. Obtain an API Key: For more details on how to create and manage an API key, refer to Managing user API keys.
  2. Set the API Key as an Environment Variable: For security reasons, it's recommended to not hard-code your API key directly in your scripts. Instead, set it up as an environment variable. You can use the following code to prompt for the API key and set it as an environment variable:
import os
from getpass import getpass

watsonx_api_key = getpass()
os.environ["WATSONX_APIKEY"] = watsonx_api_key

Alternatively, you can set the environment variable in your terminal.

  • Linux/macOS: Open your terminal and execute the following command:

    export WATSONX_APIKEY='your_ibm_api_key'
    

    To make this environment variable persistent across terminal sessions, add the above line to your ~/.bashrc, ~/.bash_profile, or ~/.zshrc file.

  • Windows: For Command Prompt, use:

    set WATSONX_APIKEY=your_ibm_api_key
    

Load the model

You might need to adjust embedding parameters for different tasks.

truncate_input_tokens = 3

Initialize the WatsonxEmbeddings class with the previously set parameters.

Note:

In this example, we’ll use the project_id and Dallas URL.

You need to specify the model_id that will be used for inferencing.

from llama_index.embeddings.ibm import WatsonxEmbeddings

watsonx_embedding = WatsonxEmbeddings(
    model_id="ibm/slate-125m-english-rtrvr",
    url="https://us-south.ml.cloud.ibm.com",
    project_id="PASTE YOUR PROJECT_ID HERE",
    truncate_input_tokens=truncate_input_tokens,
)

Alternatively, you can use Cloud Pak for Data credentials. For details, see watsonx.ai software setup.

watsonx_embedding = WatsonxEmbeddings(
    model_id="ibm/slate-125m-english-rtrvr",
    url="PASTE YOUR URL HERE",
    username="PASTE YOUR USERNAME HERE",
    password="PASTE YOUR PASSWORD HERE",
    instance_id="openshift",
    version="4.8",
    project_id="PASTE YOUR PROJECT_ID HERE",
    truncate_input_tokens=truncate_input_tokens,
)

Usage

Embed query

query = "Example query."

query_result = watsonx_embedding.get_query_embedding(query)
print(query_result[:5])

Embed list of texts

texts = ["This is a content of one document", "This is another document"]

doc_result = watsonx_embedding.get_text_embedding_batch(texts)
print(doc_result[0][:5])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_embeddings_ibm-0.2.1.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_embeddings_ibm-0.2.1.tar.gz.

File metadata

  • Download URL: llama_index_embeddings_ibm-0.2.1.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_embeddings_ibm-0.2.1.tar.gz
Algorithm Hash digest
SHA256 7ec05752f07891789652111a722464e15fb3494f5209b00c6909e96073477f8b
MD5 1cbac586c35f229195563f3ab209071c
BLAKE2b-256 c04490ffb68ce9f9e4af81bab51609fedb948d72c9e894bb5b0d8affa33db12e

See more details on using hashes here.

File details

Details for the file llama_index_embeddings_ibm-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_embeddings_ibm-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9b83a1ed7512b56d7d62461d4eac3090987f43b2cc311d75ef9cbf1713e7e0c9
MD5 91842a247851b9d67f79a8dafa523191
BLAKE2b-256 7e00c7bd489b57a96d3dd3cf6ab5a3e8eb0a962b2837a49477cd66d8bf6ae167

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page