Skip to main content

Interface between LLMs and your data

Project description

🗂️ LlamaIndex 🦙

PyPI - Downloads GitHub contributors Discord

LlamaIndex (GPT Index) is a data framework for your LLM application.

PyPI:

LlamaIndex.TS (Typescript/Javascript): https://github.com/run-llama/LlamaIndexTS.

Documentation: https://docs.llamaindex.ai/en/stable/.

Twitter: https://twitter.com/llama_index.legacy.

Discord: https://discord.gg/dGcwcsnxhU.

Ecosystem

🚀 Overview

NOTE: This README is not updated as frequently as the documentation. Please check out the documentation above for the latest updates!

Context

  • LLMs are a phenomenal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data.
  • How do we best augment LLMs with our own private data?

We need a comprehensive toolkit to help perform this data augmentation for LLMs.

Proposed Solution

That's where LlamaIndex comes in. LlamaIndex is a "data framework" to help you build LLM apps. It provides the following tools:

  • Offers data connectors to ingest your existing data sources and data formats (APIs, PDFs, docs, SQL, etc.).
  • Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • Provides an advanced retrieval/query interface over your data: Feed in any LLM input prompt, get back retrieved context and knowledge-augmented output.
  • Allows easy integrations with your outer application framework (e.g. with LangChain, Flask, Docker, ChatGPT, anything else).

LlamaIndex provides tools for both beginner users and advanced users. Our high-level API allows beginner users to use LlamaIndex to ingest and query their data in 5 lines of code. Our lower-level APIs allow advanced users to customize and extend any module (data connectors, indices, retrievers, query engines, reranking modules), to fit their needs.

💡 Contributing

Interested in contributing? See our Contribution Guide for more details.

📄 Documentation

Full documentation can be found here: https://docs.llamaindex.ai/en/latest/.

Please check it out for the most up-to-date tutorials, how-to guides, references, and other resources!

💻 Example Usage

pip install llama-index

Examples are in the examples folder. Indices are in the indices folder (see list of indices below).

To build a simple vector store index using OpenAI:

import os

os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

from llama_index.legacy.legacy import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(documents)

To build a simple vector store index using non-OpenAI LLMs, e.g. Llama 2 hosted on Replicate, where you can easily create a free trial API token:

import os

os.environ["REPLICATE_API_TOKEN"] = "YOUR_REPLICATE_API_TOKEN"

from llama_index.legacy.legacy.llms import Replicate

llama2_7b_chat = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e"
llm = Replicate(
    model=llama2_7b_chat,
    temperature=0.01,
    additional_kwargs={"top_p": 1, "max_new_tokens": 300},
)

# set tokenizer to match LLM
from llama_index.legacy.legacy import set_global_tokenizer
from transformers import AutoTokenizer

set_global_tokenizer(
    AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf").encode
)

from llama_index.legacy.legacy.embeddings import HuggingFaceEmbedding
from llama_index.legacy.legacy import ServiceContext

embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
service_context = ServiceContext.from_defaults(
    llm=llm, embed_model=embed_model
)

from llama_index.legacy.legacy import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(
    documents, service_context=service_context
)

To query:

query_engine = index.as_query_engine()
query_engine.query("YOUR_QUESTION")

By default, data is stored in-memory. To persist to disk (under ./storage):

index.storage_context.persist()

To reload from disk:

from llama_index.legacy.legacy import StorageContext, load_index_from_storage

# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir="./storage")
# load index
index = load_index_from_storage(storage_context)

🔧 Dependencies

The main third-party package requirements are tiktoken, openai, and langchain.

All requirements should be contained within the setup.py file. To run the package locally without building the wheel, simply run:

pip install poetry
poetry install --with dev

📖 Citation

Reference to cite if you use LlamaIndex in a paper:

@software{Liu_LlamaIndex_2022,
author = {Liu, Jerry},
doi = {10.5281/zenodo.1234},
month = {11},
title = {{LlamaIndex}},
url = {https://github.com/jerryjliu/llama_index},
year = {2022}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_legacy-0.9.48.post2.tar.gz (781.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

llama_index_legacy-0.9.48.post2-py3-none-any.whl (1.2 MB view details)

Uploaded Python 3

File details

Details for the file llama_index_legacy-0.9.48.post2.tar.gz.

File metadata

  • Download URL: llama_index_legacy-0.9.48.post2.tar.gz
  • Upload date:
  • Size: 781.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_legacy-0.9.48.post2.tar.gz
Algorithm Hash digest
SHA256 a4c1f10b4d19d005674195c449f4e859022c65c816dcba1a619ef5df922aa212
MD5 138df79724d0374a2a7fa2641f167022
BLAKE2b-256 004147bea2deb7d449ec08ffe642415308b279cd767d5acfe29470a356358c12

See more details on using hashes here.

File details

Details for the file llama_index_legacy-0.9.48.post2-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_legacy-0.9.48.post2-py3-none-any.whl
Algorithm Hash digest
SHA256 2581af680a4e577d4f0accd76e8286c5f1054f28a2fb0e8e5758f09ce5da0176
MD5 9f21b84793e2e7759f1e1199f4bf7b31
BLAKE2b-256 d7aee315129d72b9b4820a4d625009a978d7167d506db265e6a50864941ba0b4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page