Skip to main content

llama-index llms anthropic integration

Project description

LlamaIndex LLM Integration: Anthropic

Anthropic is an AI research company focused on developing advanced language models, notably the Claude series. Their flagship model, Claude, is designed to generate human-like text while prioritizing safety and alignment with human intentions. Anthropic aims to create AI systems that are not only powerful but also responsible, addressing potential risks associated with artificial intelligence.

Installation

%pip install llama-index-llms-anthropic
!pip install llama-index
# Set Tokenizer
# First we want to set the tokenizer, which is slightly different than TikToken.
# NOTE: The Claude 3 tokenizer has not been updated yet; using the existing Anthropic tokenizer leads
# to context overflow errors for 200k tokens. We've temporarily set the max tokens for Claude 3 to 180k.

Basic Usage

from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings

tokenizer = Anthropic().tokenizer
Settings.tokenizer = tokenizer

# Call complete with a prompt
import os

os.environ["ANTHROPIC_API_KEY"] = "YOUR ANTHROPIC API KEY"
from llama_index.llms.anthropic import Anthropic

# To customize your API key, do this
# otherwise it will lookup ANTHROPIC_API_KEY from your env variable
# llm = Anthropic(api_key="<api_key>")
llm = Anthropic(model="claude-3-opus-20240229")

resp = llm.complete("Paul Graham is ")
print(resp)

# Sample response
# Paul Graham is a well-known entrepreneur, programmer, venture capitalist, and essayist.
# He is best known for co-founding Viaweb, one of the first web application companies, which was later
# sold to Yahoo! in 1998 and became Yahoo! Store. Graham is also the co-founder of Y Combinator, a highly
# successful startup accelerator that has helped launch numerous successful companies, such as Dropbox,
# Airbnb, and Reddit.

Using Anthropic model through Vertex AI

import os

os.environ["ANTHROPIC_PROJECT_ID"] = "YOUR PROJECT ID HERE"
os.environ["ANTHROPIC_REGION"] = "YOUR PROJECT REGION HERE"
# Set region and project_id to make Anthropic use the Vertex AI client

llm = Anthropic(
    model="claude-3-5-sonnet@20240620",
    region=os.getenv("ANTHROPIC_REGION"),
    project_id=os.getenv("ANTHROPIC_PROJECT_ID"),
)

resp = llm.complete("Paul Graham is ")
print(resp)

Chat example with a list of messages

from llama_index.core.llms import ChatMessage
from llama_index.llms.anthropic import Anthropic

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="Tell me a story"),
]
resp = Anthropic(model="claude-3-opus-20240229").chat(messages)
print(resp)

Streaming example

from llama_index.llms.anthropic import Anthropic

llm = Anthropic(model="claude-3-opus-20240229", max_tokens=100)
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Chat streaming with pirate story

llm = Anthropic(model="claude-3-opus-20240229")
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="Tell me a story"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

from llama_index.llms.anthropic import Anthropic

llm = Anthropic(model="claude-3-sonnet-20240229")
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Async completion

from llama_index.llms.anthropic import Anthropic

llm = Anthropic("claude-3-sonnet-20240229")
resp = await llm.acomplete("Paul Graham is ")
print(resp)

Structured Prediction Example

from llama_index.llms.anthropic import Anthropic
from llama_index.core.prompts import PromptTemplate
from llama_index.core.bridge.pydantic import BaseModel
from typing import List


class MenuItem(BaseModel):
    """A menu item in a restaurant."""

    course_name: str
    is_vegetarian: bool


class Restaurant(BaseModel):
    """A restaurant with name, city, and cuisine."""

    name: str
    city: str
    cuisine: str
    menu_items: List[MenuItem]


llm = Anthropic("claude-3-5-sonnet-20240620")
prompt_tmpl = PromptTemplate(
    "Generate a restaurant in a given city {city_name}"
)

# Option 1: Use `as_structured_llm`
restaurant_obj = (
    llm.as_structured_llm(Restaurant)
    .complete(prompt_tmpl.format(city_name="Miami"))
    .raw
)
print(restaurant_obj)

# Option 2: Use `structured_predict`
# restaurant_obj = llm.structured_predict(Restaurant, prompt_tmpl, city_name="Miami")

# Streaming Structured Prediction
from llama_index.core.llms import ChatMessage
from IPython.display import clear_output
from pprint import pprint

input_msg = ChatMessage.from_str("Generate a restaurant in San Francisco")

sllm = llm.as_structured_llm(Restaurant)
stream_output = sllm.stream_chat([input_msg])
for partial_output in stream_output:
    clear_output(wait=True)
    pprint(partial_output.raw.dict())

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/anthropic/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_anthropic-0.3.7.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_anthropic-0.3.7.tar.gz.

File metadata

  • Download URL: llama_index_llms_anthropic-0.3.7.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_llms_anthropic-0.3.7.tar.gz
Algorithm Hash digest
SHA256 c3c6d0b4fdf19b885d0030a4629dd9522e5566e45f8441f9fccee6f20157188e
MD5 3ec834eaa248547bd9d1de3a84046618
BLAKE2b-256 eef8a68d903adb6dfdd909ad6e38dc85c31f387c6329da5192b9f9aa27cdb84c

See more details on using hashes here.

File details

Details for the file llama_index_llms_anthropic-0.3.7-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_anthropic-0.3.7-py3-none-any.whl
Algorithm Hash digest
SHA256 851e0a169974fc1992b0f9ade7f14df4c076d58e96588ea7e7d0ed694847886a
MD5 9572f548bbf98233b18e9745b25c00a5
BLAKE2b-256 418d96c98045d8b20a4663da1229825f0e88e6632b576b73df0a80ea45ac4606

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page