Skip to main content

llama-index llms anthropic integration

Project description

LlamaIndex LLM Integration: Anthropic

Anthropic is an AI research company focused on developing advanced language models, notably the Claude series. Their flagship model, Claude, is designed to generate human-like text while prioritizing safety and alignment with human intentions. Anthropic aims to create AI systems that are not only powerful but also responsible, addressing potential risks associated with artificial intelligence.

Installation

%pip install llama-index-llms-anthropic
!pip install llama-index
# Set Tokenizer
# First we want to set the tokenizer, which is slightly different than TikToken.
# NOTE: The Claude 3 tokenizer has not been updated yet; using the existing Anthropic tokenizer leads
# to context overflow errors for 200k tokens. We've temporarily set the max tokens for Claude 3 to 180k.

Basic Usage

from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings

tokenizer = Anthropic().tokenizer
Settings.tokenizer = tokenizer

# Call complete with a prompt
import os

os.environ["ANTHROPIC_API_KEY"] = "YOUR ANTHROPIC API KEY"
from llama_index.llms.anthropic import Anthropic

# To customize your API key, do this
# otherwise it will lookup ANTHROPIC_API_KEY from your env variable
# llm = Anthropic(api_key="<api_key>")
llm = Anthropic(model="claude-3-opus-20240229")

resp = llm.complete("Paul Graham is ")
print(resp)

# Sample response
# Paul Graham is a well-known entrepreneur, programmer, venture capitalist, and essayist.
# He is best known for co-founding Viaweb, one of the first web application companies, which was later
# sold to Yahoo! in 1998 and became Yahoo! Store. Graham is also the co-founder of Y Combinator, a highly
# successful startup accelerator that has helped launch numerous successful companies, such as Dropbox,
# Airbnb, and Reddit.

Using Anthropic model through Vertex AI

import os

os.environ["ANTHROPIC_PROJECT_ID"] = "YOUR PROJECT ID HERE"
os.environ["ANTHROPIC_REGION"] = "YOUR PROJECT REGION HERE"
# Set region and project_id to make Anthropic use the Vertex AI client

llm = Anthropic(
    model="claude-3-5-sonnet@20240620",
    region=os.getenv("ANTHROPIC_REGION"),
    project_id=os.getenv("ANTHROPIC_PROJECT_ID"),
)

resp = llm.complete("Paul Graham is ")
print(resp)

Chat example with a list of messages

from llama_index.core.llms import ChatMessage
from llama_index.llms.anthropic import Anthropic

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="Tell me a story"),
]
resp = Anthropic(model="claude-3-opus-20240229").chat(messages)
print(resp)

Streaming example

from llama_index.llms.anthropic import Anthropic

llm = Anthropic(model="claude-3-opus-20240229", max_tokens=100)
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Chat streaming with pirate story

llm = Anthropic(model="claude-3-opus-20240229")
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="Tell me a story"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

from llama_index.llms.anthropic import Anthropic

llm = Anthropic(model="claude-3-sonnet-20240229")
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Async completion

from llama_index.llms.anthropic import Anthropic

llm = Anthropic("claude-3-sonnet-20240229")
resp = await llm.acomplete("Paul Graham is ")
print(resp)

Structured Prediction Example

from llama_index.llms.anthropic import Anthropic
from llama_index.core.prompts import PromptTemplate
from llama_index.core.bridge.pydantic import BaseModel
from typing import List


class MenuItem(BaseModel):
    """A menu item in a restaurant."""

    course_name: str
    is_vegetarian: bool


class Restaurant(BaseModel):
    """A restaurant with name, city, and cuisine."""

    name: str
    city: str
    cuisine: str
    menu_items: List[MenuItem]


llm = Anthropic("claude-3-5-sonnet-20240620")
prompt_tmpl = PromptTemplate(
    "Generate a restaurant in a given city {city_name}"
)

# Option 1: Use `as_structured_llm`
restaurant_obj = (
    llm.as_structured_llm(Restaurant)
    .complete(prompt_tmpl.format(city_name="Miami"))
    .raw
)
print(restaurant_obj)

# Option 2: Use `structured_predict`
# restaurant_obj = llm.structured_predict(Restaurant, prompt_tmpl, city_name="Miami")

# Streaming Structured Prediction
from llama_index.core.llms import ChatMessage
from IPython.display import clear_output
from pprint import pprint

input_msg = ChatMessage.from_str("Generate a restaurant in San Francisco")

sllm = llm.as_structured_llm(Restaurant)
stream_output = sllm.stream_chat([input_msg])
for partial_output in stream_output:
    clear_output(wait=True)
    pprint(partial_output.raw.dict())

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/anthropic/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_anthropic-0.4.0.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_anthropic-0.4.0.tar.gz.

File metadata

  • Download URL: llama_index_llms_anthropic-0.4.0.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_llms_anthropic-0.4.0.tar.gz
Algorithm Hash digest
SHA256 4a6ace6ea937c9afad5a2f0ea85547801c8cee28b43f450002cccc495638cabf
MD5 dcd7cb44eb16d247d85dab4e8eca9b68
BLAKE2b-256 1dc0b06a902315edf0d311b4d09af24c47b7f610d542c1ae0d330601696dd0fc

See more details on using hashes here.

File details

Details for the file llama_index_llms_anthropic-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_anthropic-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b4b796f720086f3df4eaac2b066c343f0a54f00d1898c4faa1ba892168be8908
MD5 37b599ddede9994d58da699ea274c42e
BLAKE2b-256 b14cf95fe148e7990b05f7031d9d2c864782a6c502d37ed4046a5a42949bb59b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page