llama-index llms anthropic integration
Project description
LlamaIndex LLM Integration: Anthropic
Anthropic is an AI research company focused on developing advanced language models, notably the Claude series. Their flagship model, Claude, is designed to generate human-like text while prioritizing safety and alignment with human intentions. Anthropic aims to create AI systems that are not only powerful but also responsible, addressing potential risks associated with artificial intelligence.
Installation
%pip install llama-index-llms-anthropic
!pip install llama-index
# Set Tokenizer
# First we want to set the tokenizer, which is slightly different than TikToken.
# NOTE: The Claude 3 tokenizer has not been updated yet; using the existing Anthropic tokenizer leads
# to context overflow errors for 200k tokens. We've temporarily set the max tokens for Claude 3 to 180k.
Basic Usage
from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings
tokenizer = Anthropic().tokenizer
Settings.tokenizer = tokenizer
# Call complete with a prompt
import os
os.environ["ANTHROPIC_API_KEY"] = "YOUR ANTHROPIC API KEY"
from llama_index.llms.anthropic import Anthropic
# To customize your API key, do this
# otherwise it will lookup ANTHROPIC_API_KEY from your env variable
# llm = Anthropic(api_key="<api_key>")
llm = Anthropic(model="claude-3-opus-20240229")
resp = llm.complete("Paul Graham is ")
print(resp)
# Sample response
# Paul Graham is a well-known entrepreneur, programmer, venture capitalist, and essayist.
# He is best known for co-founding Viaweb, one of the first web application companies, which was later
# sold to Yahoo! in 1998 and became Yahoo! Store. Graham is also the co-founder of Y Combinator, a highly
# successful startup accelerator that has helped launch numerous successful companies, such as Dropbox,
# Airbnb, and Reddit.
Using Anthropic model through Vertex AI
import os
os.environ["ANTHROPIC_PROJECT_ID"] = "YOUR PROJECT ID HERE"
os.environ["ANTHROPIC_REGION"] = "YOUR PROJECT REGION HERE"
# Set region and project_id to make Anthropic use the Vertex AI client
llm = Anthropic(
model="claude-3-5-sonnet@20240620",
region=os.getenv("ANTHROPIC_REGION"),
project_id=os.getenv("ANTHROPIC_PROJECT_ID"),
)
resp = llm.complete("Paul Graham is ")
print(resp)
Chat example with a list of messages
from llama_index.core.llms import ChatMessage
from llama_index.llms.anthropic import Anthropic
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="Tell me a story"),
]
resp = Anthropic(model="claude-3-opus-20240229").chat(messages)
print(resp)
Streaming example
from llama_index.llms.anthropic import Anthropic
llm = Anthropic(model="claude-3-opus-20240229", max_tokens=100)
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
print(r.delta, end="")
Chat streaming with pirate story
llm = Anthropic(model="claude-3-opus-20240229")
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="Tell me a story"),
]
resp = llm.stream_chat(messages)
for r in resp:
print(r.delta, end="")
Configure Model
from llama_index.llms.anthropic import Anthropic
llm = Anthropic(model="claude-3-sonnet-20240229")
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
print(r.delta, end="")
Async completion
from llama_index.llms.anthropic import Anthropic
llm = Anthropic("claude-3-sonnet-20240229")
resp = await llm.acomplete("Paul Graham is ")
print(resp)
Structured Prediction Example
from llama_index.llms.anthropic import Anthropic
from llama_index.core.prompts import PromptTemplate
from llama_index.core.bridge.pydantic import BaseModel
from typing import List
class MenuItem(BaseModel):
"""A menu item in a restaurant."""
course_name: str
is_vegetarian: bool
class Restaurant(BaseModel):
"""A restaurant with name, city, and cuisine."""
name: str
city: str
cuisine: str
menu_items: List[MenuItem]
llm = Anthropic("claude-3-5-sonnet-20240620")
prompt_tmpl = PromptTemplate(
"Generate a restaurant in a given city {city_name}"
)
# Option 1: Use `as_structured_llm`
restaurant_obj = (
llm.as_structured_llm(Restaurant)
.complete(prompt_tmpl.format(city_name="Miami"))
.raw
)
print(restaurant_obj)
# Option 2: Use `structured_predict`
# restaurant_obj = llm.structured_predict(Restaurant, prompt_tmpl, city_name="Miami")
# Streaming Structured Prediction
from llama_index.core.llms import ChatMessage
from IPython.display import clear_output
from pprint import pprint
input_msg = ChatMessage.from_str("Generate a restaurant in San Francisco")
sllm = llm.as_structured_llm(Restaurant)
stream_output = sllm.stream_chat([input_msg])
for partial_output in stream_output:
clear_output(wait=True)
pprint(partial_output.raw.dict())
LLM Implementation example
https://docs.llamaindex.ai/en/stable/examples/llm/anthropic/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llama_index_llms_anthropic-0.4.0.tar.gz
.
File metadata
- Download URL: llama_index_llms_anthropic-0.4.0.tar.gz
- Upload date:
- Size: 9.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a6ace6ea937c9afad5a2f0ea85547801c8cee28b43f450002cccc495638cabf |
|
MD5 | dcd7cb44eb16d247d85dab4e8eca9b68 |
|
BLAKE2b-256 | 1dc0b06a902315edf0d311b4d09af24c47b7f610d542c1ae0d330601696dd0fc |
File details
Details for the file llama_index_llms_anthropic-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: llama_index_llms_anthropic-0.4.0-py3-none-any.whl
- Upload date:
- Size: 9.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4b796f720086f3df4eaac2b066c343f0a54f00d1898c4faa1ba892168be8908 |
|
MD5 | 37b599ddede9994d58da699ea274c42e |
|
BLAKE2b-256 | b14cf95fe148e7990b05f7031d9d2c864782a6c502d37ed4046a5a42949bb59b |