llama-index llms azure openai integration
Project description
LlamaIndex Llms Integration: Azure Openai
Installation
%pip install llama-index-llms-azure-openai
!pip install llama-index
Prerequisites
Follow this to setup your Azure account: Setup Azure account
Set the environment variables
OPENAI_API_VERSION = "2023-07-01-preview"
AZURE_OPENAI_ENDPOINT = "https://YOUR_RESOURCE_NAME.openai.azure.com/"
OPENAI_API_KEY = "<your-api-key>"
import os
os.environ["OPENAI_API_KEY"] = "<your-api-key>"
os.environ[
"AZURE_OPENAI_ENDPOINT"
] = "https://<your-resource-name>.openai.azure.com/"
os.environ["OPENAI_API_VERSION"] = "2023-07-01-preview"
# Use your LLM
from llama_index.llms.azure_openai import AzureOpenAI
# Unlike normal OpenAI, you need to pass an engine argument in addition to model.
# The engine is the name of your model deployment you selected in Azure OpenAI Studio.
llm = AzureOpenAI(
engine="simon-llm", model="gpt-35-turbo-16k", temperature=0.0
)
# Alternatively, you can also skip setting environment variables, and pass the parameters in directly via constructor.
llm = AzureOpenAI(
engine="my-custom-llm",
model="gpt-35-turbo-16k",
temperature=0.0,
azure_endpoint="https://<your-resource-name>.openai.azure.com/",
api_key="<your-api-key>",
api_version="2023-07-01-preview",
)
# Use the complete endpoint for text completion
response = llm.complete("The sky is a beautiful blue and")
print(response)
# Expected Output:
# the sun is shining brightly. Fluffy white clouds float lazily across the sky,
# creating a picturesque scene. The vibrant blue color of the sky brings a sense
# of calm and tranquility...
Streaming completion
response = llm.stream_complete("The sky is a beautiful blue and")
for r in response:
print(r.delta, end="")
# Expected Output (Stream):
# the sun is shining brightly. Fluffy white clouds float lazily across the sky,
# creating a picturesque scene. The vibrant blue color of the sky brings a sense
# of calm and tranquility...
# Use the chat endpoint for conversation
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality."
),
ChatMessage(role="user", content="Hello"),
]
response = llm.chat(messages)
print(response)
# Expected Output:
# assistant: Ahoy there, matey! How be ye on this fine day? I be Captain Jolly Roger,
# the most colorful pirate ye ever did lay eyes on! What brings ye to me ship?
Streaming chat
response = llm.stream_chat(messages)
for r in response:
print(r.delta, end="")
# Expected Output (Stream):
# Ahoy there, matey! How be ye on this fine day? I be Captain Jolly Roger,
# the most colorful pirate ye ever did lay eyes on! What brings ye to me ship?
# Rather than adding the same parameters to each chat or completion call,
# you can set them at a per-instance level with additional_kwargs.
llm = AzureOpenAI(
engine="simon-llm",
model="gpt-35-turbo-16k",
temperature=0.0,
additional_kwargs={"user": "your_user_id"},
)
LLM Implementation example
https://docs.llamaindex.ai/en/stable/examples/llm/azure_openai/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file llama_index_llms_azure_openai-0.3.0.tar.gz
.
File metadata
- Download URL: llama_index_llms_azure_openai-0.3.0.tar.gz
- Upload date:
- Size: 5.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0feea9319d832c8b5e8e0f397c905e45df54c529b6a778825adcd0d254bd7d63 |
|
MD5 | 2cb8e952e3f023c95e3af95a7749637e |
|
BLAKE2b-256 | 81d721264774d0e0819d869ac2f6527fd6b405340647feb4fef7b6b59c520858 |
File details
Details for the file llama_index_llms_azure_openai-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: llama_index_llms_azure_openai-0.3.0-py3-none-any.whl
- Upload date:
- Size: 6.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 24091aedf7ba24a7b217d17c4358e62b5d6b43a4d3ca44750d442b02a440d26e |
|
MD5 | a5ecf026717fbe75f57710ff61726e2d |
|
BLAKE2b-256 | 9049a90c17bddddb411e0bc2d05bcf393fb03474279fb6fbe20c98db68473d98 |