Skip to main content

llama-index llms cerebras integration

Project description

LlamaIndex Llms Integration: Cerebras

At Cerebras, we've developed the world's largest and fastest AI processor, the Wafer-Scale Engine-3 (WSE-3). The Cerebras CS-3 system, powered by the WSE-3, represents a new class of AI supercomputer that sets the standard for generative AI training and inference with unparalleled performance and scalability.

With Cerebras as your inference provider, you can:

  • Achieve unprecedented speed for AI inference workloads
  • Build commercially with high throughput
  • Effortlessly scale your AI workloads with our seamless clustering technology

Our CS-3 systems can be quickly and easily clustered to create the largest AI supercomputers in the world, making it simple to place and run the largest models. Leading corporations, research institutions, and governments are already using Cerebras solutions to develop proprietary models and train popular open-source models.

Want to experience the power of Cerebras? Check out our website for more resources and explore options for accessing our technology through the Cerebras Cloud or on-premise deployments!

For more information about Cerebras Cloud, visit cloud.cerebras.ai. Our API reference is available at inference-docs.cerebras.ai.

Installation

using poetry:

poetry add llama-index-llms-cerebras

or using pip:

pip install llama-index-llms-cerebras

Basic Usage

Get an API Key from cloud.cerebras.ai and add it to your environment variables:

export CEREBRAS_API_KEY=<your api key>

Then try out one of these examples:

import os

from llama_index.core.llms import ChatMessage
from llama_index.llms.cerebras import Cerebras

llm = Cerebras(model="llama3.1-70b", api_key=os.environ["CEREBRAS_API_KEY"])

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality"
    ),
    ChatMessage(role="user", content="What is your name"),
]
resp = llm.chat(messages)
print(resp)

Or alternatively with streaming:

import os

from llama_index.llms.cerebras import Cerebras

llm = Cerebras(model="llama3.1-70b", api_key=os.environ["CEREBRAS_API_KEY"])

response = llm.stream_complete("What is Generative AI?")
for r in response:
    print(r.delta, end="")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_cerebras-0.2.0.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_cerebras-0.2.0.tar.gz.

File metadata

  • Download URL: llama_index_llms_cerebras-0.2.0.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0

File hashes

Hashes for llama_index_llms_cerebras-0.2.0.tar.gz
Algorithm Hash digest
SHA256 7456a635c4f459f969dbc18fdd1f84cd83b5f9cd978b00897a17232caba8f92c
MD5 c6de6a5214e73e55ab2c003d5a4fe33a
BLAKE2b-256 7ade1190710b0ef8ef49a34a394419bc76a8bc3d4adada9300bc01b4e7ab3efa

See more details on using hashes here.

File details

Details for the file llama_index_llms_cerebras-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_cerebras-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 aa5bb197a287568cbef30a9d0155a014b150d6baaffd40d191581ffdf409d07d
MD5 94611b571310109afde4b49081b91a5d
BLAKE2b-256 67f1a443696fde1b2b8f047448891f183717313e4084467d351f9b68ff094878

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page