Skip to main content

llama-index llms deepinfra integration

Project description

LlamaIndex Llms Integration: DeepInfra

Installation

First, install the necessary package:

pip install llama-index-llms-deepinfra

Initialization

Set up the DeepInfraLLM class with your API key and desired parameters:

from llama_index.llms.deepinfra import DeepInfraLLM
import asyncio

llm = DeepInfraLLM(
    model="mistralai/Mixtral-8x22B-Instruct-v0.1",  # Default model name
    api_key="your-deepinfra-api-key",  # Replace with your DeepInfra API key
    temperature=0.5,
    max_tokens=50,
    additional_kwargs={"top_p": 0.9},
)

Synchronous Complete

Generate a text completion synchronously using the complete method:

response = llm.complete("Hello World!")
print(response.text)

Synchronous Stream Complete

Generate a streaming text completion synchronously using the stream_complete method:

content = ""
for completion in llm.stream_complete("Once upon a time"):
    content += completion.delta
    print(completion.delta, end="")

Synchronous Chat

Generate a chat response synchronously using the chat method:

from llama_index.core.base.llms.types import ChatMessage

messages = [
    ChatMessage(role="user", content="Tell me a joke."),
]
chat_response = llm.chat(messages)
print(chat_response.message.content)

Synchronous Stream Chat

Generate a streaming chat response synchronously using the stream_chat method:

messages = [
    ChatMessage(role="system", content="You are a helpful assistant."),
    ChatMessage(role="user", content="Tell me a story."),
]
content = ""
for chat_response in llm.stream_chat(messages):
    content += chat_response.message.delta
    print(chat_response.message.delta, end="")

Asynchronous Complete

Generate a text completion asynchronously using the acomplete method:

async def async_complete():
    response = await llm.acomplete("Hello Async World!")
    print(response.text)


asyncio.run(async_complete())

Asynchronous Stream Complete

Generate a streaming text completion asynchronously using the astream_complete method:

async def async_stream_complete():
    content = ""
    response = await llm.astream_complete("Once upon an async time")
    async for completion in response:
        content += completion.delta
        print(completion.delta, end="")


asyncio.run(async_stream_complete())

Asynchronous Chat

Generate a chat response asynchronously using the achat method:

async def async_chat():
    messages = [
        ChatMessage(role="user", content="Tell me an async joke."),
    ]
    chat_response = await llm.achat(messages)
    print(chat_response.message.content)


asyncio.run(async_chat())

Asynchronous Stream Chat

Generate a streaming chat response asynchronously using the astream_chat method:

async def async_stream_chat():
    messages = [
        ChatMessage(role="system", content="You are a helpful assistant."),
        ChatMessage(role="user", content="Tell me an async story."),
    ]
    content = ""
    response = await llm.astream_chat(messages)
    async for chat_response in response:
        content += chat_response.message.delta
        print(chat_response.message.delta, end="")


asyncio.run(async_stream_chat())

For any questions or feedback, please contact us at feedback@deepinfra.com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_deepinfra-0.2.0.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_deepinfra-0.2.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_llms_deepinfra-0.2.0.tar.gz
Algorithm Hash digest
SHA256 0ce2cfdb491a5744d5679c716b6627accfdf1c44ca9684f265abd483f0697fb0
MD5 0ff69e9fff05d1423e6d431ab850f5d0
BLAKE2b-256 b5aa23a2cb2673ed7d7474c098702294a5782cf59be00107b9d396de373c1705

See more details on using hashes here.

File details

Details for the file llama_index_llms_deepinfra-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_deepinfra-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b90100d0fa223d966b27028d104a7d469d6f560e75af9589a361eaaa57c8772c
MD5 276a1bf9f6765a18af37e96339e8a68d
BLAKE2b-256 743cf06f54c12c242a6e06c1321a13db0c14580302ffa38c3afb530c982ad0f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page