Skip to main content

llama-index llms deepinfra integration

Project description

LlamaIndex Llms Integration: DeepInfra

Installation

First, install the necessary package:

pip install llama-index-llms-deepinfra

Initialization

Set up the DeepInfraLLM class with your API key and desired parameters:

from llama_index.llms.deepinfra import DeepInfraLLM
import asyncio

llm = DeepInfraLLM(
    model="mistralai/Mixtral-8x22B-Instruct-v0.1",  # Default model name
    api_key="your-deepinfra-api-key",  # Replace with your DeepInfra API key
    temperature=0.5,
    max_tokens=50,
    additional_kwargs={"top_p": 0.9},
)

Synchronous Complete

Generate a text completion synchronously using the complete method:

response = llm.complete("Hello World!")
print(response.text)

Synchronous Stream Complete

Generate a streaming text completion synchronously using the stream_complete method:

content = ""
for completion in llm.stream_complete("Once upon a time"):
    content += completion.delta
    print(completion.delta, end="")

Synchronous Chat

Generate a chat response synchronously using the chat method:

from llama_index.core.base.llms.types import ChatMessage

messages = [
    ChatMessage(role="user", content="Tell me a joke."),
]
chat_response = llm.chat(messages)
print(chat_response.message.content)

Synchronous Stream Chat

Generate a streaming chat response synchronously using the stream_chat method:

messages = [
    ChatMessage(role="system", content="You are a helpful assistant."),
    ChatMessage(role="user", content="Tell me a story."),
]
content = ""
for chat_response in llm.stream_chat(messages):
    content += chat_response.message.delta
    print(chat_response.message.delta, end="")

Asynchronous Complete

Generate a text completion asynchronously using the acomplete method:

async def async_complete():
    response = await llm.acomplete("Hello Async World!")
    print(response.text)


asyncio.run(async_complete())

Asynchronous Stream Complete

Generate a streaming text completion asynchronously using the astream_complete method:

async def async_stream_complete():
    content = ""
    response = await llm.astream_complete("Once upon an async time")
    async for completion in response:
        content += completion.delta
        print(completion.delta, end="")


asyncio.run(async_stream_complete())

Asynchronous Chat

Generate a chat response asynchronously using the achat method:

async def async_chat():
    messages = [
        ChatMessage(role="user", content="Tell me an async joke."),
    ]
    chat_response = await llm.achat(messages)
    print(chat_response.message.content)


asyncio.run(async_chat())

Asynchronous Stream Chat

Generate a streaming chat response asynchronously using the astream_chat method:

async def async_stream_chat():
    messages = [
        ChatMessage(role="system", content="You are a helpful assistant."),
        ChatMessage(role="user", content="Tell me an async story."),
    ]
    content = ""
    response = await llm.astream_chat(messages)
    async for chat_response in response:
        content += chat_response.message.delta
        print(chat_response.message.delta, end="")


asyncio.run(async_stream_chat())

For any questions or feedback, please contact us at feedback@deepinfra.com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_deepinfra-0.2.1.tar.gz (8.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_deepinfra-0.2.1.tar.gz.

File metadata

  • Download URL: llama_index_llms_deepinfra-0.2.1.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_llms_deepinfra-0.2.1.tar.gz
Algorithm Hash digest
SHA256 0e556ec5a04b3a3e90a613e26dce1bcda6b640f122d93dccb173c575ae97f1aa
MD5 e837b48e59a3c60dea615f61c5df2fbd
BLAKE2b-256 88980b6a2ed24a42cb26c49c757bbc349acc428c7d803ee6e521306e82f189e3

See more details on using hashes here.

File details

Details for the file llama_index_llms_deepinfra-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_deepinfra-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0bc805cb974a72ac9ff61b5af109e1d01fd9a6b96ced3e30968f24b7aeddc278
MD5 d187ef840126541695eaf4b83facd305
BLAKE2b-256 70ecaf4c1bba5119266ca2294a03d2492e00788cc2412c4ca00a63d08b388d12

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page