Skip to main content

llama-index llms everlyai integration

Project description

LlamaIndex Llms Integration: Everlyai

Installation

  1. Install the required Python packages:

    %pip install llama-index-llms-everlyai
    !pip install llama-index
    
  2. Set the EverlyAI API key as an environment variable or pass it directly to the constructor:

    import os
    
    os.environ["EVERLYAI_API_KEY"] = "<your-api-key>"
    

    Or use it directly in your Python code:

    llm = EverlyAI(api_key="your-api-key")
    

Usage

Basic Chat

To send a message and get a response (e.g., a joke):

from llama_index.llms.everlyai import EverlyAI
from llama_index.core.llms import ChatMessage

# Initialize EverlyAI with API key
llm = EverlyAI(api_key="your-api-key")

# Create a message
message = ChatMessage(role="user", content="Tell me a joke")

# Call the chat method
resp = llm.chat([message])
print(resp)

Example output:

Why don't scientists trust atoms?
Because they make up everything!

Streamed Chat

To stream a response for more dynamic conversations (e.g., storytelling):

message = ChatMessage(role="user", content="Tell me a story in 250 words")
resp = llm.stream_chat([message])

for r in resp:
    print(r.delta, end="")

Example output (partial):

As the sun set over the horizon, a young girl named Lily sat on the beach, watching the waves roll in...

Complete Tasks

To use the complete method for simpler tasks like telling a joke:

resp = llm.complete("Tell me a joke")
print(resp)

Example output:

Why don't scientists trust atoms?
Because they make up everything!

Streamed Completion

For generating responses like stories using stream_complete:

resp = llm.stream_complete("Tell me a story in 250 words")

for r in resp:
    print(r.delta, end="")

Example output (partial):

As the sun set over the horizon, a young girl named Maria sat on the beach, watching the waves roll in...

Notes

  • Ensure the API key is set correctly before making any requests.
  • The stream_chat and stream_complete methods allow for real-time response streaming, making them ideal for dynamic and lengthy outputs like stories.

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/everlyai/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_everlyai-0.3.0.tar.gz (3.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_everlyai-0.3.0.tar.gz.

File metadata

  • Download URL: llama_index_llms_everlyai-0.3.0.tar.gz
  • Upload date:
  • Size: 3.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0

File hashes

Hashes for llama_index_llms_everlyai-0.3.0.tar.gz
Algorithm Hash digest
SHA256 40aa5d16c68e56533dacf444e3d73deab466142852f9e39734debb529abbc919
MD5 dbc09262b2e0668db8d1b42b058fc726
BLAKE2b-256 f9a4c72e673c9a506d749a80723305c0def7c316ed49128dbce3c532da83eb3a

See more details on using hashes here.

File details

Details for the file llama_index_llms_everlyai-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_everlyai-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9c14fbf7639262fe452fbbcbfdcaaa901387d191ca40b441cb280f915126540b
MD5 aa68e00aa67ff477d4e009ffc2ad54a4
BLAKE2b-256 c4905a38d093a5e7afaf350b16ca9bc57ca5ea2a653a279eb9cc2b120755a1d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page