Skip to main content

llama-index llms friendli integration

Project description

LlamaIndex Llms Integration: Friendli

Installation

  1. Install the required Python packages:

    %pip install llama-index-llms-friendli
    !pip install llama-index
    
  2. Set the Friendli token as an environment variable:

    %env FRIENDLI_TOKEN=your_token_here
    

Usage

Basic Chat

To generate a chat response, use the following code:

from llama_index.llms.friendli import Friendli
from llama_index.core.llms import ChatMessage, MessageRole

llm = Friendli()

message = ChatMessage(role=MessageRole.USER, content="Tell me a joke.")
resp = llm.chat([message])
print(resp)

Streaming Responses

To stream chat responses in real-time:

resp = llm.stream_chat([message])
for r in resp:
    print(r.delta, end="")

Asynchronous Chat

For asynchronous chat interactions, use the following:

resp = await llm.achat([message])
print(resp)

Async Streaming

To handle async streaming of chat responses:

resp = await llm.astream_chat([message])
async for r in resp:
    print(r.delta, end="")

Complete with a Prompt

To generate a completion based on a prompt:

prompt = "Draft a cover letter for a role in software engineering."
resp = llm.complete(prompt)
print(resp)

Streaming Completion

To stream completions in real-time:

resp = llm.stream_complete(prompt)
for r in resp:
    print(r.delta, end="")

Async Completion

To handle async completions:

resp = await llm.acomplete(prompt)
print(resp)

Async Streaming Completion

For async streaming of completions:

resp = await llm.astream_complete(prompt)
async for r in resp:
    print(r.delta, end="")

Model Configuration

To configure a specific model:

llm = Friendli(model="llama-2-70b-chat")
resp = llm.chat([message])
print(resp)

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/friendli/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_friendli-0.2.2.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_friendli-0.2.2.tar.gz.

File metadata

  • Download URL: llama_index_llms_friendli-0.2.2.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.8.0-1014-azure

File hashes

Hashes for llama_index_llms_friendli-0.2.2.tar.gz
Algorithm Hash digest
SHA256 dc4617ef80d1f5f2d2e0ac12f4aed9f6249f39033c0e9c12b952d51c5fd5ca07
MD5 5ac86a8f79580d17d6465d809273f519
BLAKE2b-256 1f4774db6120097630756df6a436cacec1b097e378f4de88f967e1c7c4a07097

See more details on using hashes here.

File details

Details for the file llama_index_llms_friendli-0.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_friendli-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4a553c2e5940c167cbd70caed9f50717a4e0ed47605b9045f90b32ae7cc083f8
MD5 291e792f448d888444ab3e8ee52c603f
BLAKE2b-256 4268fa00002be78de201eb6366a58b17c1d02bc07ced20df3d1eebb85f08589e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page