Skip to main content

llama-index llms gemini integration

Project description

LlamaIndex Llms Integration: Gemini

Installation

  1. Install the required Python packages:

    %pip install llama-index-llms-gemini
    !pip install -q llama-index google-generativeai
    
  2. Set the Google API key as an environment variable:

    %env GOOGLE_API_KEY=your_api_key_here
    

Usage

Basic Content Generation

To generate a poem using the Gemini model, use the following code:

from llama_index.llms.gemini import Gemini

resp = Gemini().complete("Write a poem about a magic backpack")
print(resp)

Chat with Messages

To simulate a conversation, send a list of messages:

from llama_index.core.llms import ChatMessage
from llama_index.llms.gemini import Gemini

messages = [
    ChatMessage(role="user", content="Hello friend!"),
    ChatMessage(role="assistant", content="Yarr what is shakin' matey?"),
    ChatMessage(
        role="user", content="Help me decide what to have for dinner."
    ),
]
resp = Gemini().chat(messages)
print(resp)

Streaming Responses

To stream content responses in real-time:

from llama_index.llms.gemini import Gemini

llm = Gemini()
resp = llm.stream_complete(
    "The story of Sourcrust, the bread creature, is really interesting. It all started when..."
)
for r in resp:
    print(r.text, end="")

To stream chat responses:

from llama_index.llms.gemini import Gemini
from llama_index.core.llms import ChatMessage

llm = Gemini()
messages = [
    ChatMessage(role="user", content="Hello friend!"),
    ChatMessage(role="assistant", content="Yarr what is shakin' matey?"),
    ChatMessage(
        role="user", content="Help me decide what to have for dinner."
    ),
]
resp = llm.stream_chat(messages)

Using Other Models

To find suitable models available in the Gemini model site:

import google.generativeai as genai

for m in genai.list_models():
    if "generateContent" in m.supported_generation_methods:
        print(m.name)

Specific Model Usage

To use a specific model, you can configure it like this:

from llama_index.llms.gemini import Gemini

llm = Gemini(model="models/gemini-pro")
resp = llm.complete("Write a short, but joyous, ode to LlamaIndex")
print(resp)

Asynchronous API

To use the asynchronous completion API:

from llama_index.llms.gemini import Gemini

llm = Gemini()
resp = await llm.acomplete("Llamas are famous for ")
print(resp)

For asynchronous streaming of responses:

resp = await llm.astream_complete("Llamas are famous for ")
async for chunk in resp:
    print(chunk.text, end="")

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/gemini/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_gemini-0.4.0.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

llama_index_llms_gemini-0.4.0-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_llms_gemini-0.4.0.tar.gz.

File metadata

  • Download URL: llama_index_llms_gemini-0.4.0.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0

File hashes

Hashes for llama_index_llms_gemini-0.4.0.tar.gz
Algorithm Hash digest
SHA256 a1fa5a38eddbbe5313dfa9528a8fb38698d05b2f5ab33ad09710ea61719d491e
MD5 931130b810f07aeb7f47d313cabf0c0e
BLAKE2b-256 7d3b90a43f479a50cfb772945518c28766727be945f265be8bb5d4969757c9d3

See more details on using hashes here.

File details

Details for the file llama_index_llms_gemini-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_gemini-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b7369dfb979c136482c06b8b24c3cedaa74aa92210407491ae1fff761e1f85c0
MD5 6a3b41818e4e58bf35942927f39e1ed3
BLAKE2b-256 6b39ad724a5f4c59cac9634068736520864714fb3a00f49650fa4841df705bdf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page