Skip to main content

llama-index llms gemini integration

Project description

LlamaIndex Llms Integration: Gemini

Installation

  1. Install the required Python packages:

    %pip install llama-index-llms-gemini
    !pip install -q llama-index google-generativeai
    
  2. Set the Google API key as an environment variable:

    %env GOOGLE_API_KEY=your_api_key_here
    

Usage

Basic Content Generation

To generate a poem using the Gemini model, use the following code:

from llama_index.llms.gemini import Gemini

resp = Gemini().complete("Write a poem about a magic backpack")
print(resp)

Chat with Messages

To simulate a conversation, send a list of messages:

from llama_index.core.llms import ChatMessage
from llama_index.llms.gemini import Gemini

messages = [
    ChatMessage(role="user", content="Hello friend!"),
    ChatMessage(role="assistant", content="Yarr what is shakin' matey?"),
    ChatMessage(
        role="user", content="Help me decide what to have for dinner."
    ),
]
resp = Gemini().chat(messages)
print(resp)

Streaming Responses

To stream content responses in real-time:

from llama_index.llms.gemini import Gemini

llm = Gemini()
resp = llm.stream_complete(
    "The story of Sourcrust, the bread creature, is really interesting. It all started when..."
)
for r in resp:
    print(r.text, end="")

To stream chat responses:

from llama_index.llms.gemini import Gemini
from llama_index.core.llms import ChatMessage

llm = Gemini()
messages = [
    ChatMessage(role="user", content="Hello friend!"),
    ChatMessage(role="assistant", content="Yarr what is shakin' matey?"),
    ChatMessage(
        role="user", content="Help me decide what to have for dinner."
    ),
]
resp = llm.stream_chat(messages)

Using Other Models

To find suitable models available in the Gemini model site:

import google.generativeai as genai

for m in genai.list_models():
    if "generateContent" in m.supported_generation_methods:
        print(m.name)

Specific Model Usage

To use a specific model, you can configure it like this:

from llama_index.llms.gemini import Gemini

llm = Gemini(model="models/gemini-pro")
resp = llm.complete("Write a short, but joyous, ode to LlamaIndex")
print(resp)

Asynchronous API

To use the asynchronous completion API:

from llama_index.llms.gemini import Gemini

llm = Gemini()
resp = await llm.acomplete("Llamas are famous for ")
print(resp)

For asynchronous streaming of responses:

resp = await llm.astream_complete("Llamas are famous for ")
async for chunk in resp:
    print(chunk.text, end="")

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/gemini/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_gemini-0.3.7.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

llama_index_llms_gemini-0.3.7-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_llms_gemini-0.3.7.tar.gz.

File metadata

  • Download URL: llama_index_llms_gemini-0.3.7.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.8.0-1014-azure

File hashes

Hashes for llama_index_llms_gemini-0.3.7.tar.gz
Algorithm Hash digest
SHA256 cf8bb02d8facb5fd6108903a68ebdbbb72764d3cad115889a97b245527488c48
MD5 5286ba6957046aa47d99a38e91fc64fe
BLAKE2b-256 8e91a14594839ceadad4e65da3633b7198d2170587e8ac0779c01339d94ad534

See more details on using hashes here.

File details

Details for the file llama_index_llms_gemini-0.3.7-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_gemini-0.3.7-py3-none-any.whl
Algorithm Hash digest
SHA256 0bf069c4c844af384a3ba69b7dbc23c625c86a25c949f43c6b48ace806dca4e5
MD5 dd0321a9203d2020a0fae4c9edde44c1
BLAKE2b-256 92dc7209e5852b59a5085f1c54ccd4d8c20d9dedd8bbed3e5168efe56cc2ccac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page