Skip to main content

llama-index llms mistral ai integration

Project description

LlamaIndex Llms Integration: Mistral

Installation

Install the required packages using the following commands:

%pip install llama-index-llms-mistralai
!pip install llama-index

Basic Usage

Initialize the MistralAI Model

To use the MistralAI model, create an instance and provide your API key:

from llama_index.llms.mistralai import MistralAI

llm = MistralAI(api_key="<replace-with-your-key>")

Generate Completions

To generate a text completion for a prompt, use the complete method:

resp = llm.complete("Paul Graham is ")
print(resp)

Chat with the Model

You can also chat with the model using a list of messages. Here’s an example:

from llama_index.core.llms import ChatMessage

messages = [
    ChatMessage(role="system", content="You are CEO of MistralAI."),
    ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = MistralAI().chat(messages)
print(resp)

Using Random Seed

To set a random seed for reproducibility, initialize the model with the random_seed parameter:

resp = MistralAI(random_seed=42).chat(messages)
print(resp)

Streaming Responses

Stream Completions

You can stream responses using the stream_complete method:

resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Stream Chat Responses

To stream chat messages, use the following code:

messages = [
    ChatMessage(role="system", content="You are CEO of MistralAI."),
    ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

To use a specific model configuration, initialize the model with the desired model name:

llm = MistralAI(model="mistral-medium")
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Function Calling

You can call functions from the model by defining tools. Here’s an example:

from llama_index.llms.mistralai import MistralAI
from llama_index.core.tools import FunctionTool


def multiply(a: int, b: int) -> int:
    """Multiply two integers and return the result."""
    return a * b


def mystery(a: int, b: int) -> int:
    """Mystery function on two integers."""
    return a * b + a + b


mystery_tool = FunctionTool.from_defaults(fn=mystery)
multiply_tool = FunctionTool.from_defaults(fn=multiply)

llm = MistralAI(model="mistral-large-latest")
response = llm.predict_and_call(
    [mystery_tool, multiply_tool],
    user_msg="What happens if I run the mystery function on 5 and 7",
)
print(str(response))

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/mistralai/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_mistralai-0.3.0.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_mistralai-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_llms_mistralai-0.3.0.tar.gz
Algorithm Hash digest
SHA256 e7108d57046ea6455692ee486b52cf390784931275f7e8b04aacce4ea0cc3c0c
MD5 f6e10b3735f113484b6698a6bdd0f02f
BLAKE2b-256 ae769c7f31c2f70a8c03ff387595e534aafd91380597cf8ff567d67fff720f3b

See more details on using hashes here.

File details

Details for the file llama_index_llms_mistralai-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_mistralai-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1da2610a64b27c9a446f3e5d05a5fc0df6574e9a0887ae4789edf2743fb79121
MD5 ad15da5b571c93d604cf30abf6d152bf
BLAKE2b-256 e67c81e920a05850e03337ab7f1f1351300ee510b87dc250bdb496a7f58764e5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page