Skip to main content

llama-index llms monsterapi integration

Project description

LlamaIndex Llms Integration: Monsterapi

MonsterAPI LLM.

Monster Deploy enables you to host any vLLM supported large language model (LLM) like Tinyllama, Mixtral, Phi-2 etc as a rest API endpoint on MonsterAPI's cost optimised GPU cloud.

With MonsterAPI's integration in Llama index, you can use your deployed LLM API endpoints to create RAG system or RAG bot for use cases such as: - Answering questions on your documents - Improving the content of your documents - Finding context of importance in your documents

Once deployment is launched use the base_url and api_auth_token once deployment is live and use them below.

Note: When using LLama index to access Monster Deploy LLMs, you need to create a prompt with required template and send compiled prompt as input.

See LLama Index Prompt Template Usage example section for more details.

see (https://developer.monsterapi.ai/docs/monster-deploy-beta) for more details

Once deployment is launched use the base_url and api_auth_token once deployment is live and use them below.

Note: When using LLama index to access Monster Deploy LLMs, you need to create a prompt with reqhired template and send compiled prompt as input. see section LLama Index Prompt Template Usage example for more details.

Examples:

pip install llama-index-llms-monsterapi

  1. MonsterAPI Private LLM Deployment use case

    from llama_index.llms.monsterapi import MonsterLLM
    
        llm = MonsterLLM(
            model = "<Replace with basemodel used to deploy>",
            api_base="https://ecc7deb6-26e0-419b-a7f2-0deb934af29a.monsterapi.ai",
            api_key="a0f8a6ba-c32f-4407-af0c-169f1915490c",
            temperature=0.75,
        )
    
        response = llm.complete("What is the capital of France?")
        ```
    
  2. Monster API General Available LLMs

    from llama_index.llms.monsterapi import MonsterLLM
    
        llm = MonsterLLM(model="microsoft/Phi-3-mini-4k-instruct")
    
        response = llm.complete("What is the capital of France?")
        print(str(response))
        ```
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_monsterapi-0.3.0.tar.gz (3.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_monsterapi-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_llms_monsterapi-0.3.0.tar.gz
Algorithm Hash digest
SHA256 f3b207d0d8bfd1f29fc666bb223f835150a3d86e8e0de95c06a22b3a93b498a8
MD5 9fa4e5770f5d0198f0e9c6fc779eb4d4
BLAKE2b-256 0c163ec6adfbaeaf4d3d4f18f36000e270752eaf5ee4087a38ef02a961f41c48

See more details on using hashes here.

File details

Details for the file llama_index_llms_monsterapi-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_monsterapi-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6f923351a7ac6d303e142f2ac71dccf42a7406fccdd491833099a0f219dbe9cc
MD5 5fd45ebe32a48a9b6e6de24c93deb077
BLAKE2b-256 543e49fe8c3843dca1b4efbe69aebc826408a754e3e42608fbd693a632dd11d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page