Skip to main content

llama-index llms mymagic integration

Project description

LlamaIndex Llms Integration: Mymagic

Installation

To install the required package, run:

%pip install llama-index-llms-mymagic
!pip install llama-index

Setup

Before you begin, set up your cloud storage bucket and grant MyMagic API secure access. For detailed instructions, visit the MyMagic documentation.

Initialize MyMagicAI

Create an instance of MyMagicAI by providing your API key and storage configuration:

from llama_index.llms.mymagic import MyMagicAI

llm = MyMagicAI(
    api_key="your-api-key",
    storage_provider="s3",  # Options: 's3' or 'gcs'
    bucket_name="your-bucket-name",
    session="your-session-name",  # Directory for batch inference
    role_arn="your-role-arn",
    system_prompt="your-system-prompt",
    region="your-bucket-region",
    return_output=False,  # Set to True to return output JSON
    input_json_file=None,  # Input file stored on the bucket
    list_inputs=None,  # List of inputs for small batch
    structured_output=None,  # JSON schema of the output
)

Note: If return_output is set to True, max_tokens should be at least 100.

Generate Completions

To generate a text completion for a question, use the complete method:

resp = llm.complete(
    question="your-question",
    model="choose-model",  # Supported models: mistral7b, llama7b, mixtral8x7b, codellama70b, llama70b, etc.
    max_tokens=5,  # Number of tokens to generate (default is 10)
)
print(
    resp
)  # The response indicates if the final output is stored in your bucket or raises an exception if the job failed

Asynchronous Requests

For asynchronous operations, use the acomplete endpoint:

import asyncio


async def main():
    response = await llm.acomplete(
        question="your-question",
        model="choose-model",  # Supported models listed in the documentation
        max_tokens=5,  # Number of tokens to generate (default is 10)
    )
    print("Async completion response:", response)


await main()

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/mymagic/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_mymagic-0.3.0.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

llama_index_llms_mymagic-0.3.0-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_llms_mymagic-0.3.0.tar.gz.

File metadata

  • Download URL: llama_index_llms_mymagic-0.3.0.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0

File hashes

Hashes for llama_index_llms_mymagic-0.3.0.tar.gz
Algorithm Hash digest
SHA256 4daff3b54514bd7ef82bfa4ca4687ea53dec6088f109697dd81af5a27239a3c8
MD5 50f567c8ec50273d23318032de4827b2
BLAKE2b-256 7dc5ba5578960bde5a6f3871f85f535af5ab09d6a070044b587f1eb49348bc0a

See more details on using hashes here.

File details

Details for the file llama_index_llms_mymagic-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_mymagic-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4d0b57eb2d2d18d900bf15fc9e68bae6c7a69591c769e5227f81b9c723d3f3cf
MD5 3e9a13e4c386851334128b96a60c30d2
BLAKE2b-256 c313b5749d4750c5fd4c95a5c317ce4d2574554764d29180a224329fb0892da7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page