Skip to main content

llama-index llms ollama integration

Project description

LlamaIndex Llms Integration: Ollama

Installation

To install the required package, run:

pip install llama-index-llms-ollama

Setup

  1. Follow the Ollama README to set up and run a local Ollama instance.
  2. When the Ollama app is running on your local machine, it will serve all of your local models on localhost:11434.
  3. Select your model when creating the Ollama instance by specifying model=":".
  4. You can increase the default timeout (30 seconds) by setting Ollama(..., request_timeout=300.0).
  5. If you set llm = Ollama(..., model="<model family>") without a version, it will automatically look for the latest version.

Usage

Initialize Ollama

from llama_index.llms.ollama import Ollama

llm = Ollama(model="llama3.1:latest", request_timeout=120.0)

Generate Completions

To generate a text completion for a prompt, use the complete method:

resp = llm.complete("Who is Paul Graham?")
print(resp)

Chat Responses

To send a chat message and receive a response, create a list of ChatMessage instances and use the chat method:

from llama_index.core.llms import ChatMessage

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.chat(messages)
print(resp)

Streaming Responses

Stream Complete

To stream responses for a prompt, use the stream_complete method:

response = llm.stream_complete("Who is Paul Graham?")
for r in response:
    print(r.delta, end="")

Stream Chat

To stream chat responses, use the stream_chat method:

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

JSON Mode

Ollama supports a JSON mode to ensure all responses are valid JSON, which is useful for tools that need to parse structured outputs:

llm = Ollama(model="llama3.1:latest", request_timeout=120.0, json_mode=True)
response = llm.complete(
    "Who is Paul Graham? Output as a structured JSON object."
)
print(str(response))

Structured Outputs

You can attach a Pydantic class to the LLM to ensure structured outputs:

from llama_index.core.bridge.pydantic import BaseModel
from llama_index.core.tools import FunctionTool


class Song(BaseModel):
    """A song with name and artist."""

    name: str
    artist: str


llm = Ollama(model="llama3.1:latest", request_timeout=120.0)
sllm = llm.as_structured_llm(Song)

response = sllm.chat([ChatMessage(role="user", content="Name a random song!")])
print(
    response.message.content
)  # e.g., {"name": "Yesterday", "artist": "The Beatles"}

Asynchronous Chat

You can also use asynchronous chat:

response = await sllm.achat(
    [ChatMessage(role="user", content="Name a random song!")]
)
print(response.message.content)

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/ollama/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_ollama-0.4.0.tar.gz (5.6 kB view details)

Uploaded Source

Built Distribution

llama_index_llms_ollama-0.4.0-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_llms_ollama-0.4.0.tar.gz.

File metadata

  • Download URL: llama_index_llms_ollama-0.4.0.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.10 Darwin/22.3.0

File hashes

Hashes for llama_index_llms_ollama-0.4.0.tar.gz
Algorithm Hash digest
SHA256 3885142b810a4508c973e981e3afedb90e80b35089f5fe9245c88cf3d02c56c3
MD5 00bc0794c4a4fa423f8eef3d4fab2e6e
BLAKE2b-256 a3f0607ab6b587e040914007e4b664b4907b6fd9c0785cd912804d41af3be52f

See more details on using hashes here.

File details

Details for the file llama_index_llms_ollama-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_ollama-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3d89b4f8b333d41e5b5eda9531d1b98ed2dc51a9be39ac63a8a916b183a92181
MD5 98461360e97f6b3b17f49381311e79fb
BLAKE2b-256 c6bd706dc924ff9969faf9e93e813a72e7addcefd14492ebd42bed27d182eff8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page