Skip to main content

llama-index llms openai integration

Project description

LlamaIndex Llms Integration: Openai

Installation

To install the required package, run:

%pip install llama-index-llms-openai

Setup

  1. Set your OpenAI API key as an environment variable. You can replace "sk-..." with your actual API key:
import os

os.environ["OPENAI_API_KEY"] = "sk-..."

Basic Usage

Generate Completions

To generate a completion for a prompt, use the complete method:

from llama_index.llms.openai import OpenAI

resp = OpenAI().complete("Paul Graham is ")
print(resp)

Chat Responses

To send a chat message and receive a response, create a list of ChatMessage instances and use the chat method:

from llama_index.core.llms import ChatMessage

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = OpenAI().chat(messages)
print(resp)

Streaming Responses

Stream Complete

To stream responses for a prompt, use the stream_complete method:

from llama_index.llms.openai import OpenAI

llm = OpenAI()
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Stream Chat

To stream chat responses, use the stream_chat method:

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage

llm = OpenAI()
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

You can specify a particular model when creating the OpenAI instance:

llm = OpenAI(model="gpt-3.5-turbo")
resp = llm.complete("Paul Graham is ")
print(resp)

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.chat(messages)
print(resp)

Asynchronous Usage

You can also use asynchronous methods for completion:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo")
resp = await llm.acomplete("Paul Graham is ")
print(resp)

Set API Key at a Per-Instance Level

If desired, you can have separate LLM instances use different API keys:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo", api_key="BAD_KEY")
resp = OpenAI().complete("Paul Graham is ")
print(resp)

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/openai/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_openai-0.3.1.tar.gz (13.4 kB view details)

Uploaded Source

Built Distribution

llama_index_llms_openai-0.3.1-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_llms_openai-0.3.1.tar.gz.

File metadata

  • Download URL: llama_index_llms_openai-0.3.1.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_llms_openai-0.3.1.tar.gz
Algorithm Hash digest
SHA256 51abfdc0df6c052dda53814fb33eb7af245c81982c02972ce27e292d3d42783d
MD5 67b26c761af97097a7d495fa37d79baa
BLAKE2b-256 6d7b222b6f9c2cd42d29c410d9485d202317f1cd442c504d3064376954c773bc

See more details on using hashes here.

File details

Details for the file llama_index_llms_openai-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_openai-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 45218f445b21484334ba3af55c11aaba6bff0a6952abbef483ab710a50167b57
MD5 26498d07434eac1226c724e23b6109e6
BLAKE2b-256 5dcd5badc63469392df245677287a480e850f8433781a0d7482fc85e742c6bf0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page