Skip to main content

llama-index llms openai integration

Project description

LlamaIndex Llms Integration: Openai

Installation

To install the required package, run:

%pip install llama-index-llms-openai

Setup

  1. Set your OpenAI API key as an environment variable. You can replace "sk-..." with your actual API key:
import os

os.environ["OPENAI_API_KEY"] = "sk-..."

Basic Usage

Generate Completions

To generate a completion for a prompt, use the complete method:

from llama_index.llms.openai import OpenAI

resp = OpenAI().complete("Paul Graham is ")
print(resp)

Chat Responses

To send a chat message and receive a response, create a list of ChatMessage instances and use the chat method:

from llama_index.core.llms import ChatMessage

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = OpenAI().chat(messages)
print(resp)

Streaming Responses

Stream Complete

To stream responses for a prompt, use the stream_complete method:

from llama_index.llms.openai import OpenAI

llm = OpenAI()
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Stream Chat

To stream chat responses, use the stream_chat method:

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage

llm = OpenAI()
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

You can specify a particular model when creating the OpenAI instance:

llm = OpenAI(model="gpt-3.5-turbo")
resp = llm.complete("Paul Graham is ")
print(resp)

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.chat(messages)
print(resp)

Asynchronous Usage

You can also use asynchronous methods for completion:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo")
resp = await llm.acomplete("Paul Graham is ")
print(resp)

Set API Key at a Per-Instance Level

If desired, you can have separate LLM instances use different API keys:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo", api_key="BAD_KEY")
resp = OpenAI().complete("Paul Graham is ")
print(resp)

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/openai/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_openai-0.2.15.tar.gz (13.4 kB view details)

Uploaded Source

Built Distribution

llama_index_llms_openai-0.2.15-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_llms_openai-0.2.15.tar.gz.

File metadata

  • Download URL: llama_index_llms_openai-0.2.15.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.3 Linux/6.8.0-1015-azure

File hashes

Hashes for llama_index_llms_openai-0.2.15.tar.gz
Algorithm Hash digest
SHA256 f13655535e8966f5ccf0214c7360e86ef8fc718678557ef248d7fe13f6fde8d0
MD5 6bf77cd53e6aa4d0fcf07d1c3e2b38e5
BLAKE2b-256 c977f1dfa05ad53d31cf0025716c909878cba7e2d035135150c2ec611030a9bd

See more details on using hashes here.

File details

Details for the file llama_index_llms_openai-0.2.15-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_openai-0.2.15-py3-none-any.whl
Algorithm Hash digest
SHA256 a906669397c4c0c3ee55b241dcc22bf0129b3391a8d6ae681a2579affbc5ed48
MD5 fa56eb5e804b784cf25981dc53440d5b
BLAKE2b-256 0670952e4a291cc510186baff14655beb9fedae4541b827c69b5e001bb77269c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page