Skip to main content

llama-index llms openai integration

Project description

LlamaIndex Llms Integration: Openai

Installation

To install the required package, run:

%pip install llama-index-llms-openai

Setup

  1. Set your OpenAI API key as an environment variable. You can replace "sk-..." with your actual API key:
import os

os.environ["OPENAI_API_KEY"] = "sk-..."

Basic Usage

Generate Completions

To generate a completion for a prompt, use the complete method:

from llama_index.llms.openai import OpenAI

resp = OpenAI().complete("Paul Graham is ")
print(resp)

Chat Responses

To send a chat message and receive a response, create a list of ChatMessage instances and use the chat method:

from llama_index.core.llms import ChatMessage

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = OpenAI().chat(messages)
print(resp)

Streaming Responses

Stream Complete

To stream responses for a prompt, use the stream_complete method:

from llama_index.llms.openai import OpenAI

llm = OpenAI()
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
    print(r.delta, end="")

Stream Chat

To stream chat responses, use the stream_chat method:

from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage

llm = OpenAI()
messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.stream_chat(messages)
for r in resp:
    print(r.delta, end="")

Configure Model

You can specify a particular model when creating the OpenAI instance:

llm = OpenAI(model="gpt-3.5-turbo")
resp = llm.complete("Paul Graham is ")
print(resp)

messages = [
    ChatMessage(
        role="system", content="You are a pirate with a colorful personality."
    ),
    ChatMessage(role="user", content="What is your name?"),
]
resp = llm.chat(messages)
print(resp)

Asynchronous Usage

You can also use asynchronous methods for completion:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo")
resp = await llm.acomplete("Paul Graham is ")
print(resp)

Set API Key at a Per-Instance Level

If desired, you can have separate LLM instances use different API keys:

from llama_index.llms.openai import OpenAI

llm = OpenAI(model="gpt-3.5-turbo", api_key="BAD_KEY")
resp = OpenAI().complete("Paul Graham is ")
print(resp)

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/openai/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_openai-0.2.16.tar.gz (13.4 kB view details)

Uploaded Source

Built Distribution

llama_index_llms_openai-0.2.16-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file llama_index_llms_openai-0.2.16.tar.gz.

File metadata

  • Download URL: llama_index_llms_openai-0.2.16.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for llama_index_llms_openai-0.2.16.tar.gz
Algorithm Hash digest
SHA256 7c666dd27056c278a079ff45d53f1fbfc8ed363764aa7baeee2e03df47f9072a
MD5 520181a95e1ec6ffff90d9eaaf79cbe7
BLAKE2b-256 bae746f16e0f3ad25f49a050f1421a20b738ec312a5003bd07d749095eedb235

See more details on using hashes here.

File details

Details for the file llama_index_llms_openai-0.2.16-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_openai-0.2.16-py3-none-any.whl
Algorithm Hash digest
SHA256 413466acbb894bd81f8dab2037f595e92392d869eec6d8274a16d43123cac8b6
MD5 d7c9a9fa066a62d866d476f2dfdbcf87
BLAKE2b-256 3b49bae3a019eba473a0b9bf21ad911786f86941e86dd0dac3c3e909352eaf54

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page