Skip to main content

llama-index llms openrouter integration

Project description

LlamaIndex Llms Integration: Openrouter

Installation

To install the required packages, run:

%pip install llama-index-llms-openrouter
!pip install llama-index

Setup

Initialize OpenRouter

You need to set either the environment variable OPENROUTER_API_KEY or pass your API key directly in the class constructor. Replace <your-api-key> with your actual API key:

from llama_index.llms.openrouter import OpenRouter
from llama_index.core.llms import ChatMessage

llm = OpenRouter(
    api_key="<your-api-key>",
    max_tokens=256,
    context_window=4096,
    model="gryphe/mythomax-l2-13b",
)

Generate Chat Responses

You can generate a chat response by sending a list of ChatMessage instances:

message = ChatMessage(role="user", content="Tell me a joke")
resp = llm.chat([message])
print(resp)

Streaming Responses

To stream responses, use the stream_chat method:

message = ChatMessage(role="user", content="Tell me a story in 250 words")
resp = llm.stream_chat([message])
for r in resp:
    print(r.delta, end="")

Complete with Prompt

You can also generate completions with a prompt using the complete method:

resp = llm.complete("Tell me a joke")
print(resp)

Streaming Completion

To stream completions, use the stream_complete method:

resp = llm.stream_complete("Tell me a story in 250 words")
for r in resp:
    print(r.delta, end="")

Model Configuration

To use a specific model, you can specify it during initialization. For example, to use Mistral's Mixtral model, you can set it like this:

llm = OpenRouter(model="mistralai/mixtral-8x7b-instruct")
resp = llm.complete("Write a story about a dragon who can code in Rust")
print(resp)

LLM Implementation example

https://docs.llamaindex.ai/en/stable/examples/llm/openrouter/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

llama_index_llms_openrouter-0.3.0.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file llama_index_llms_openrouter-0.3.0.tar.gz.

File metadata

File hashes

Hashes for llama_index_llms_openrouter-0.3.0.tar.gz
Algorithm Hash digest
SHA256 4dfa5b39f1d3bfef1b494c1c0d9341f7a05024d6b043e80cd5790bad25ceac86
MD5 27ab1edf79e726374c84d7bce8d6aa16
BLAKE2b-256 7c27210827b02edf888e5d2b8e18d20c0e407b5de7bfc370e2b596e0602dcf24

See more details on using hashes here.

File details

Details for the file llama_index_llms_openrouter-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for llama_index_llms_openrouter-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2d8971b338cc86a6e3cab39a844954df9e017bf3706b0db4d1e7da6c02d94a49
MD5 fba50a3e3ed746c722c4e61f0309696a
BLAKE2b-256 fa23c3cd899dc99b34d319764569a3efe33b30e6c7fd006a6242b54eb289a404

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page